Abstract

An approximate voxel model for integral imaging is proposed by ray tracing. By analyzing the case of corresponding pixels overlapping completely and partially in the image space, the voxel is defined with an appropriate approximation, and the voxel size and its distribution feature in imaging space are derived. The model is verified in a reconstruction experiment of a resolution target and compared with the calculation result of an integral imaging display or reconstruction system. The proposed model is simple and easy to calculate and thus useful for the evaluation and optimization of integral imaging systems.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Stern and B. Javidi, Proc. IEEE 94, 591 (2006).
    [CrossRef]
  2. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, Appl. Opt. 52, 546 (2013).
    [CrossRef]
  3. B. Javidi, R. Ponce-Díaz, and S. H. Hong, Opt. Lett. 31, 1106 (2006).
    [CrossRef]
  4. D. C. Hwang, D. H. Shin, S. C. Kim, and E. S. Kim, Appl. Opt. 47, D128 (2008).
    [CrossRef]
  5. S. Kishk and B. Javidi, Opt. Express 11, 3528 (2003).
    [CrossRef]
  6. D. Shin and B. Javidi, Opt. Lett. 37, 2130 (2012).
    [CrossRef]
  7. H. Liao, T. Dohi, and M. Iwahara, Opt. Express 15, 4814 (2007).
    [CrossRef]
  8. M. Cho and B. Javidi, J. Display Technol. 8, 357 (2012).
    [CrossRef]
  9. C. H. Wu, Q. Q. Wang, H. X. Wang, and J. H. Lan, J. Opt. Soc. Am. A 30, 2328 (2013).
    [CrossRef]
  10. Z. Kavehvash, M. Martinez-Corral, K. Mehrany, S. Bagheri, G. Saavedra, and H. Navarro, J. Opt. Soc. Am. A 29, 525 (2012).
    [CrossRef]
  11. H. Navarro, E. Sánchez-Ortiga, G. Saavedra, A. Llavador, A. Dorado, M. Martínez-Corral, and B. Javidi, J. Display Technol. 9, 37 (2013).
    [CrossRef]
  12. S. H. Hong, J. S. Jang, and B. Javidi, Opt. Express 12, 483 (2004).
    [CrossRef]

2013 (3)

2012 (3)

2008 (1)

2007 (1)

2006 (2)

2004 (1)

2003 (1)

Bagheri, S.

Cho, M.

Dohi, T.

Dorado, A.

Hong, S. H.

Hwang, D. C.

Iwahara, M.

Jang, J. S.

Javidi, B.

Kavehvash, Z.

Kim, E. S.

Kim, S. C.

Kishk, S.

Lan, J. H.

Liao, H.

Llavador, A.

Martinez-Corral, M.

Martínez-Corral, M.

Mehrany, K.

Navarro, H.

Ponce-Díaz, R.

Saavedra, G.

Sánchez-Ortiga, E.

Shin, D.

Shin, D. H.

Stern, A.

Wang, H. X.

Wang, Q. Q.

Wu, C. H.

Xiao, X.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Voxel defined by complete overlapping of the corresponding pixels. (a) 2D view and (b) 3D view.

Fig. 2.
Fig. 2.

Voxel defined by partial overlap of the corresponding pixels. (a) 2D view and (b) 3D view.

Fig. 3.
Fig. 3.

Voxel size and resolution along the z axis: (a) lateral size of the voxel and (b) lateral resolution of the voxel and the depth resolution.

Fig. 4.
Fig. 4.

Result of the digital reconstruction experiment. (a) Reconstruction image at z=696mm, marked with a dashed line in (c) and (d); (b) extracted gray level of the transverse line in (a), with the limit decided by the Rayleigh energy criterion marked by an ellipse; (c) and (d) experimental and calculated voxel sizes, respectively, and their distribution along the z axis from 680 to 720 mm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ZC=pgLPpLP=p+mδm=1,2,p2δ,
HC=ZCδg=pδ(LPp),
DC=(N1)pg2δ(N1)2(LPp)2δ2.
LPALPB=δNk.
HU=ZUδ2g=(N1)2pδ42LP2pδ((N1)(LPpδ)+δ)((N1)(LPp)δ),
DU=(N1)pg(N3)δ((N1)(LPpδ)+δ)((N1)(LPp)δ).
ZU=(N1)2pg22LP2pδ((N1)(LPpδ)+δ)((N1)(LPp)δ).

Metrics