Abstract

The characteristics of surface plasmon polaritons at a chiral–metal interface are analyzed in detail. Compared to conventional surface plasmon waves at a dielectric–metal interface, it is shown that chiral surface plasmon waves have distinguishing features such as the presence of an s-wave at the metal surface, the existence of a cutoff frequency and chirality value, and the dependence of the propagation length on the chiral parameter. These properties of chiral surface plasmon waves can be exploited for on-chip chiral sensing and enantiometric detection applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Krupin, H. Asiri, C. Wang, R. N. Tait, and P. Berini, Opt. Express 21, 698 (2013).
    [Crossref]
  2. B. M. Maoz, Y. Chaikin, A. B. Tesler, O. B. Elli, Z. Fan, A. O. Govorov, and G. Markovich, Nano Lett. 13, 1203 (2013).
    [Crossref]
  3. N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, Nano Lett. 12, 977 (2012).
    [Crossref]
  4. P. Pelet and N. Engheta, IEEE Trans. Antennas Propag. 38, 90 (1990).
    [Crossref]
  5. N. Engheta and P. Pelet, Opt. Lett. 16, 723 (1991).
    [Crossref]
  6. K. M. Flood and D. L. Jaggard, Opt. Lett. 21, 474 (1996).
    [Crossref]
  7. J. Xiao, K. Zhang, and L. Gao, Int. J. Infrared Millim. Waves 18, 939 (1997).
    [Crossref]
  8. J. A. Polo and A. Lakhtakia, Proc. R. Soc. London, Ser. A 465, 87 (2009).
    [Crossref]
  9. S. Bassiri, C. H. Papas, and N. Engheta, J. Opt. Soc. Am. A 5, 1450 (1988).
    [Crossref]
  10. M. G. Blaber, M. D. Arnold, and M. J. Ford, J. Phys. Chem. 113, 3041 (2009).
    [Crossref]

2013 (2)

O. Krupin, H. Asiri, C. Wang, R. N. Tait, and P. Berini, Opt. Express 21, 698 (2013).
[Crossref]

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. B. Elli, Z. Fan, A. O. Govorov, and G. Markovich, Nano Lett. 13, 1203 (2013).
[Crossref]

2012 (1)

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, Nano Lett. 12, 977 (2012).
[Crossref]

2009 (2)

J. A. Polo and A. Lakhtakia, Proc. R. Soc. London, Ser. A 465, 87 (2009).
[Crossref]

M. G. Blaber, M. D. Arnold, and M. J. Ford, J. Phys. Chem. 113, 3041 (2009).
[Crossref]

1997 (1)

J. Xiao, K. Zhang, and L. Gao, Int. J. Infrared Millim. Waves 18, 939 (1997).
[Crossref]

1996 (1)

1991 (1)

1990 (1)

P. Pelet and N. Engheta, IEEE Trans. Antennas Propag. 38, 90 (1990).
[Crossref]

1988 (1)

Abdulrahman, N. A.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, Nano Lett. 12, 977 (2012).
[Crossref]

Arnold, M. D.

M. G. Blaber, M. D. Arnold, and M. J. Ford, J. Phys. Chem. 113, 3041 (2009).
[Crossref]

Asiri, H.

Bassiri, S.

Berini, P.

Blaber, M. G.

M. G. Blaber, M. D. Arnold, and M. J. Ford, J. Phys. Chem. 113, 3041 (2009).
[Crossref]

Chaikin, Y.

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. B. Elli, Z. Fan, A. O. Govorov, and G. Markovich, Nano Lett. 13, 1203 (2013).
[Crossref]

Elli, O. B.

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. B. Elli, Z. Fan, A. O. Govorov, and G. Markovich, Nano Lett. 13, 1203 (2013).
[Crossref]

Engheta, N.

Fan, Z.

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. B. Elli, Z. Fan, A. O. Govorov, and G. Markovich, Nano Lett. 13, 1203 (2013).
[Crossref]

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, Nano Lett. 12, 977 (2012).
[Crossref]

Flood, K. M.

Ford, M. J.

M. G. Blaber, M. D. Arnold, and M. J. Ford, J. Phys. Chem. 113, 3041 (2009).
[Crossref]

Gadegaard, N.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, Nano Lett. 12, 977 (2012).
[Crossref]

Gao, L.

J. Xiao, K. Zhang, and L. Gao, Int. J. Infrared Millim. Waves 18, 939 (1997).
[Crossref]

Govorov, A. O.

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. B. Elli, Z. Fan, A. O. Govorov, and G. Markovich, Nano Lett. 13, 1203 (2013).
[Crossref]

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, Nano Lett. 12, 977 (2012).
[Crossref]

Hendry, E.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, Nano Lett. 12, 977 (2012).
[Crossref]

Jaggard, D. L.

Kadodwala, M.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, Nano Lett. 12, 977 (2012).
[Crossref]

Kelly, S. M.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, Nano Lett. 12, 977 (2012).
[Crossref]

Krupin, O.

Lakhtakia, A.

J. A. Polo and A. Lakhtakia, Proc. R. Soc. London, Ser. A 465, 87 (2009).
[Crossref]

Maoz, B. M.

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. B. Elli, Z. Fan, A. O. Govorov, and G. Markovich, Nano Lett. 13, 1203 (2013).
[Crossref]

Markovich, G.

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. B. Elli, Z. Fan, A. O. Govorov, and G. Markovich, Nano Lett. 13, 1203 (2013).
[Crossref]

Papas, C. H.

Pelet, P.

N. Engheta and P. Pelet, Opt. Lett. 16, 723 (1991).
[Crossref]

P. Pelet and N. Engheta, IEEE Trans. Antennas Propag. 38, 90 (1990).
[Crossref]

Polo, J. A.

J. A. Polo and A. Lakhtakia, Proc. R. Soc. London, Ser. A 465, 87 (2009).
[Crossref]

Tait, R. N.

Tesler, A. B.

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. B. Elli, Z. Fan, A. O. Govorov, and G. Markovich, Nano Lett. 13, 1203 (2013).
[Crossref]

Tonooka, T.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, Nano Lett. 12, 977 (2012).
[Crossref]

Wang, C.

Xiao, J.

J. Xiao, K. Zhang, and L. Gao, Int. J. Infrared Millim. Waves 18, 939 (1997).
[Crossref]

Zhang, K.

J. Xiao, K. Zhang, and L. Gao, Int. J. Infrared Millim. Waves 18, 939 (1997).
[Crossref]

IEEE Trans. Antennas Propag. (1)

P. Pelet and N. Engheta, IEEE Trans. Antennas Propag. 38, 90 (1990).
[Crossref]

Int. J. Infrared Millim. Waves (1)

J. Xiao, K. Zhang, and L. Gao, Int. J. Infrared Millim. Waves 18, 939 (1997).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. (1)

M. G. Blaber, M. D. Arnold, and M. J. Ford, J. Phys. Chem. 113, 3041 (2009).
[Crossref]

Nano Lett. (2)

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. B. Elli, Z. Fan, A. O. Govorov, and G. Markovich, Nano Lett. 13, 1203 (2013).
[Crossref]

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, Nano Lett. 12, 977 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Proc. R. Soc. London, Ser. A (1)

J. A. Polo and A. Lakhtakia, Proc. R. Soc. London, Ser. A 465, 87 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Interface between a metal and a chiral medium.

Fig. 2.
Fig. 2.

(a) Dispersion curve (black line) of SPPs at an interface between gold and a chiral medium with parameters nc=1.5 and ξ=105Ω1. The frequency and propagation constant are normalized by the SP resonance frequency ωsp and ksp=ωsp/c, respectively. The inset shows the effective index Neff versus frequency for different ξ values. (b) Dependence of the SPP propagation length on frequency for various ξ values. The green dashed lines in both plots are the dispersion curves of SPPs at a dielectric–metal interface.

Fig. 3.
Fig. 3.

Relationship between the cutoff chirality parameter ξc and the cutoff frequency ωc for Au and Al metal layers and different values of the chiral index nc.

Fig. 4.
Fig. 4.

(a) Real part of the effective index and (b) propagation loss of chiral–Au SPPs as functions of the chirality parameter ξ at various fixed wavelengths.

Fig. 5.
Fig. 5.

Field distributions of |Ez|, |Ex|, |Ey|, the ratio |Ex/Ey|, and phase angle difference ϕxϕy of chiral–Au SP modes at λ=0.6μm (left panels, ξ=104Ω1; right panels, ξ=6.68×104Ω1ξc). The fields in (a)–(d) are normalized by the peak value of |Ex|.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

2(EH)+(1+2χ2)nc2k02(EH)+(2jξk02/η02H2jξ(1+χ2)nc2k02E)=0,
Ez=[U1(x)+U2(x)]ejβz,
Hz=jηc1+χ2[U1(x)U2(x)]ejβz,
d2U1(2)dx2+(k+()2β2)U1(2)=0.
Ex=(jβ/kx1)C1ekx1x(jβ/kx2)C2ekx2x,
Hx=ηc1+χ2(βkx1C1ekx1xβkx2C2ekx2x),
Ey=(k+/kx1)C1ekx1x+(k/kx2)C2ekx2x,
Hy=jηc1+χ2(k+kx1C1ekx1x+kkx2C2ekx2x).
(ωμ0ηc1+χ2kx1+k+kxm)(ωεmηc1+χ2kx2+kkxm)+(ωμ0ηc1+χ2kx2+kkxm)(ωεmηc1+χ2kx1+k+kxm)=0.
εm2+2εcεm(1+2χ2)1+1/χ2+εc2[(1+χ2)21+1/χ2]=0.
ωc=(ωP2εεm/ε0γ2)1/2.

Metrics