Abstract

The phenomenon of spatial frequency doubling generated by a two-step technique with the collimated beam at normal incidence in the second exposure is presented. Theoretical analysis demonstrates that the phenomenon is induced by the Talbot effect in photoresist and the superposition of two exposures, and the minimum achievable period of the grating with double spatial frequency can be close to one half of the exposure wavelength in vacuum, divided by the refractive index of photoresist λ/2n. The two-step technique has the potential to be a simpler and more practical resolution-improving technique for the Talbot-effect-based approach of spatial frequency doubling.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Zimmerman, “Double patterning lithography: double the trouble or double the fun?” SPIE Newsroom, doi: 10.1117/2.1200906.1691 (2009).
  2. L. F. Johnson and K. A. Ingersoll, Appl. Phys. Lett. 38, 532 (1981).
    [CrossRef]
  3. B. Cui, Z. N. Yu, H. X. Ge, and S. Y. Chou, Appl. Phys. Lett. 90, 043118 (2007).
    [CrossRef]
  4. H. Lee and R. Verma, Opt. Express 19, 16518 (2011).
    [CrossRef]
  5. I. Z. Indutnyi, V. A. Dan’ko, V. I. Myn’ko, P. E. Shepeliavyi, and O. V. Bereznyova, J. Optoelectron. Adv. Mater. 13, 1467 (2011).
  6. H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 56, 67 (2003).
  7. D. C. Flanders, A. M. Hawryluk, and H. I. Smith, J. Vac. Sci. Technol. 16, 1949 (1979).
    [CrossRef]
  8. H. H. Solak and Y. Ekinci, J. Vac. Sci. Technol. B 23, 2705 (2005).
    [CrossRef]
  9. S. S. Sarkar, H. H. Solak, M. Saidani, C. David, and J. F. van der Veen, Opt. Lett. 36, 1860 (2011).
    [CrossRef]
  10. H. H. Solak, C. Dais, and F. Clube, Opt. Express 19, 10686 (2011).
    [CrossRef]
  11. T. Sato, J. Vac. Sci. Technol. B 30, 06FG02 (2012).
    [CrossRef]
  12. S. S. Li, S. Liu, and X. S. Zhang, Proc. SPIE 5456, 374 (2004).
    [CrossRef]
  13. S. S. Li, S. Liu, X. S. Zhang, Y. Liu, and X. C. Ren, Proc. SPIE 5636, 597 (2005).
    [CrossRef]
  14. K. Patorski, Prog. Opt. 27, 1 (1989).
    [CrossRef]
  15. V. Arrizón and J. Ojeda-Castañeda, J. Opt. Soc. Am. A 9, 1801 (1992).
    [CrossRef]
  16. Y. Q. Lu, C. H. Zhou, S. Q. Wang, and B. Wang, J. Opt. Soc. Am. A 23, 2154 (2006).
    [CrossRef]
  17. Y. Fang, Q. F. Tan, M. Q. Zhang, and G. F. Jin, Opt. Commun. 285, 4161 (2012).
    [CrossRef]

2012 (2)

T. Sato, J. Vac. Sci. Technol. B 30, 06FG02 (2012).
[CrossRef]

Y. Fang, Q. F. Tan, M. Q. Zhang, and G. F. Jin, Opt. Commun. 285, 4161 (2012).
[CrossRef]

2011 (4)

2007 (1)

B. Cui, Z. N. Yu, H. X. Ge, and S. Y. Chou, Appl. Phys. Lett. 90, 043118 (2007).
[CrossRef]

2006 (1)

2005 (2)

H. H. Solak and Y. Ekinci, J. Vac. Sci. Technol. B 23, 2705 (2005).
[CrossRef]

S. S. Li, S. Liu, X. S. Zhang, Y. Liu, and X. C. Ren, Proc. SPIE 5636, 597 (2005).
[CrossRef]

2004 (1)

S. S. Li, S. Liu, and X. S. Zhang, Proc. SPIE 5456, 374 (2004).
[CrossRef]

2003 (1)

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 56, 67 (2003).

1992 (1)

1989 (1)

K. Patorski, Prog. Opt. 27, 1 (1989).
[CrossRef]

1981 (1)

L. F. Johnson and K. A. Ingersoll, Appl. Phys. Lett. 38, 532 (1981).
[CrossRef]

1979 (1)

D. C. Flanders, A. M. Hawryluk, and H. I. Smith, J. Vac. Sci. Technol. 16, 1949 (1979).
[CrossRef]

Arrizón, V.

Bereznyova, O. V.

I. Z. Indutnyi, V. A. Dan’ko, V. I. Myn’ko, P. E. Shepeliavyi, and O. V. Bereznyova, J. Optoelectron. Adv. Mater. 13, 1467 (2011).

Cerrina, F.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 56, 67 (2003).

Chou, S. Y.

B. Cui, Z. N. Yu, H. X. Ge, and S. Y. Chou, Appl. Phys. Lett. 90, 043118 (2007).
[CrossRef]

Clube, F.

Cui, B.

B. Cui, Z. N. Yu, H. X. Ge, and S. Y. Chou, Appl. Phys. Lett. 90, 043118 (2007).
[CrossRef]

Dais, C.

Dan’ko, V. A.

I. Z. Indutnyi, V. A. Dan’ko, V. I. Myn’ko, P. E. Shepeliavyi, and O. V. Bereznyova, J. Optoelectron. Adv. Mater. 13, 1467 (2011).

David, C.

S. S. Sarkar, H. H. Solak, M. Saidani, C. David, and J. F. van der Veen, Opt. Lett. 36, 1860 (2011).
[CrossRef]

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 56, 67 (2003).

Ekinci, Y.

H. H. Solak and Y. Ekinci, J. Vac. Sci. Technol. B 23, 2705 (2005).
[CrossRef]

Fang, Y.

Y. Fang, Q. F. Tan, M. Q. Zhang, and G. F. Jin, Opt. Commun. 285, 4161 (2012).
[CrossRef]

Flanders, D. C.

D. C. Flanders, A. M. Hawryluk, and H. I. Smith, J. Vac. Sci. Technol. 16, 1949 (1979).
[CrossRef]

Ge, H. X.

B. Cui, Z. N. Yu, H. X. Ge, and S. Y. Chou, Appl. Phys. Lett. 90, 043118 (2007).
[CrossRef]

Gobrecht, J.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 56, 67 (2003).

Golovkina, V.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 56, 67 (2003).

Hawryluk, A. M.

D. C. Flanders, A. M. Hawryluk, and H. I. Smith, J. Vac. Sci. Technol. 16, 1949 (1979).
[CrossRef]

Indutnyi, I. Z.

I. Z. Indutnyi, V. A. Dan’ko, V. I. Myn’ko, P. E. Shepeliavyi, and O. V. Bereznyova, J. Optoelectron. Adv. Mater. 13, 1467 (2011).

Ingersoll, K. A.

L. F. Johnson and K. A. Ingersoll, Appl. Phys. Lett. 38, 532 (1981).
[CrossRef]

Jin, G. F.

Y. Fang, Q. F. Tan, M. Q. Zhang, and G. F. Jin, Opt. Commun. 285, 4161 (2012).
[CrossRef]

Johnson, L. F.

L. F. Johnson and K. A. Ingersoll, Appl. Phys. Lett. 38, 532 (1981).
[CrossRef]

Kim, S. O.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 56, 67 (2003).

Lee, H.

Li, S. S.

S. S. Li, S. Liu, X. S. Zhang, Y. Liu, and X. C. Ren, Proc. SPIE 5636, 597 (2005).
[CrossRef]

S. S. Li, S. Liu, and X. S. Zhang, Proc. SPIE 5456, 374 (2004).
[CrossRef]

Liu, S.

S. S. Li, S. Liu, X. S. Zhang, Y. Liu, and X. C. Ren, Proc. SPIE 5636, 597 (2005).
[CrossRef]

S. S. Li, S. Liu, and X. S. Zhang, Proc. SPIE 5456, 374 (2004).
[CrossRef]

Liu, Y.

S. S. Li, S. Liu, X. S. Zhang, Y. Liu, and X. C. Ren, Proc. SPIE 5636, 597 (2005).
[CrossRef]

Lu, Y. Q.

Myn’ko, V. I.

I. Z. Indutnyi, V. A. Dan’ko, V. I. Myn’ko, P. E. Shepeliavyi, and O. V. Bereznyova, J. Optoelectron. Adv. Mater. 13, 1467 (2011).

Nealey, P. F.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 56, 67 (2003).

Ojeda-Castañeda, J.

Patorski, K.

K. Patorski, Prog. Opt. 27, 1 (1989).
[CrossRef]

Ren, X. C.

S. S. Li, S. Liu, X. S. Zhang, Y. Liu, and X. C. Ren, Proc. SPIE 5636, 597 (2005).
[CrossRef]

Saidani, M.

Sarkar, S. S.

Sato, T.

T. Sato, J. Vac. Sci. Technol. B 30, 06FG02 (2012).
[CrossRef]

Shepeliavyi, P. E.

I. Z. Indutnyi, V. A. Dan’ko, V. I. Myn’ko, P. E. Shepeliavyi, and O. V. Bereznyova, J. Optoelectron. Adv. Mater. 13, 1467 (2011).

Smith, H. I.

D. C. Flanders, A. M. Hawryluk, and H. I. Smith, J. Vac. Sci. Technol. 16, 1949 (1979).
[CrossRef]

Solak, H. H.

S. S. Sarkar, H. H. Solak, M. Saidani, C. David, and J. F. van der Veen, Opt. Lett. 36, 1860 (2011).
[CrossRef]

H. H. Solak, C. Dais, and F. Clube, Opt. Express 19, 10686 (2011).
[CrossRef]

H. H. Solak and Y. Ekinci, J. Vac. Sci. Technol. B 23, 2705 (2005).
[CrossRef]

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 56, 67 (2003).

Tan, Q. F.

Y. Fang, Q. F. Tan, M. Q. Zhang, and G. F. Jin, Opt. Commun. 285, 4161 (2012).
[CrossRef]

van der Veen, J. F.

Verma, R.

Wang, B.

Wang, S. Q.

Yu, Z. N.

B. Cui, Z. N. Yu, H. X. Ge, and S. Y. Chou, Appl. Phys. Lett. 90, 043118 (2007).
[CrossRef]

Zhang, M. Q.

Y. Fang, Q. F. Tan, M. Q. Zhang, and G. F. Jin, Opt. Commun. 285, 4161 (2012).
[CrossRef]

Zhang, X. S.

S. S. Li, S. Liu, X. S. Zhang, Y. Liu, and X. C. Ren, Proc. SPIE 5636, 597 (2005).
[CrossRef]

S. S. Li, S. Liu, and X. S. Zhang, Proc. SPIE 5456, 374 (2004).
[CrossRef]

Zhou, C. H.

Zimmerman, P.

P. Zimmerman, “Double patterning lithography: double the trouble or double the fun?” SPIE Newsroom, doi: 10.1117/2.1200906.1691 (2009).

Appl. Phys. Lett. (2)

L. F. Johnson and K. A. Ingersoll, Appl. Phys. Lett. 38, 532 (1981).
[CrossRef]

B. Cui, Z. N. Yu, H. X. Ge, and S. Y. Chou, Appl. Phys. Lett. 90, 043118 (2007).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Optoelectron. Adv. Mater. (1)

I. Z. Indutnyi, V. A. Dan’ko, V. I. Myn’ko, P. E. Shepeliavyi, and O. V. Bereznyova, J. Optoelectron. Adv. Mater. 13, 1467 (2011).

J. Vac. Sci. Technol. (1)

D. C. Flanders, A. M. Hawryluk, and H. I. Smith, J. Vac. Sci. Technol. 16, 1949 (1979).
[CrossRef]

J. Vac. Sci. Technol. B (2)

H. H. Solak and Y. Ekinci, J. Vac. Sci. Technol. B 23, 2705 (2005).
[CrossRef]

T. Sato, J. Vac. Sci. Technol. B 30, 06FG02 (2012).
[CrossRef]

Microelectron. Eng. (1)

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 56, 67 (2003).

Opt. Commun. (1)

Y. Fang, Q. F. Tan, M. Q. Zhang, and G. F. Jin, Opt. Commun. 285, 4161 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (2)

S. S. Li, S. Liu, and X. S. Zhang, Proc. SPIE 5456, 374 (2004).
[CrossRef]

S. S. Li, S. Liu, X. S. Zhang, Y. Liu, and X. C. Ren, Proc. SPIE 5636, 597 (2005).
[CrossRef]

Prog. Opt. (1)

K. Patorski, Prog. Opt. 27, 1 (1989).
[CrossRef]

Other (1)

P. Zimmerman, “Double patterning lithography: double the trouble or double the fun?” SPIE Newsroom, doi: 10.1117/2.1200906.1691 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic process flow for spatial frequency doubling with two-step technique: (a) first exposure of two-beam interference (θ the incident angle of the two laser beams), (b) the first development generating an initial grating with spatial frequency of 1/Λ (Λ the initial grating period), (c) the second exposure of one laser beam at normal incidence, and (d) the second development producing a final grating with double spatial frequency of 2/Λ.

Fig. 2.
Fig. 2.

AFM images of the initial grating and the grating with double spatial frequency: (a) top view of the initial grating, (b) top view of the grating with double spatial frequency, (c) cross-sectional profile of the initial grating, and (d) cross-sectional profile of the grating with double spatial frequency.

Fig. 3.
Fig. 3.

Light intensity and dosage distribution at one quarter of the Talbot length given by the scalar theory with the same parameters as in the experiment (Λ=1002.7nm, h=316.85nm, n=1.57): (a) intensity curves for the first and second exposures and (b) combined light dosage curve of the first and second exposures.

Fig. 4.
Fig. 4.

AFM images of the final grating fabricated with two-step technique and the same parameters as in Fig. 2 except that the second exposure time is 440 s: (a) top view of the grating and (b) cross-sectional profile of the grating.

Fig. 5.
Fig. 5.

Combined light dosage curve of the first and second exposures at one quarter of the Talbot length given by the scalar theory with the same parameters as in Fig. 3 except that the second exposure time is 53 s.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I1(x)=2(1+cos2πxΛ).
t(x)=exp{iπhλ[(n+1)(n1)cos2πxΛ]},
I2(x)=1+sin{πh(n1)λ[cos2πxΛ+cos2π(xΛ/2)Λ]}.

Metrics