Abstract

We proposed and experimentally demonstrated an all-fiber structured wavelength-tunable second-order optical temporal differentiator based on a linearly chirped fiber Bragg grating and a digital-controlled thermal array. The central frequency of the differentiation can be reconfigured from 192.141 to 192.616 THz by a programmable circuit. In the experiment, a second-order differentiator with 3 dB bandwidth of 0.086 THz is achieved with a root mean square error of 4.89%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Slavik, Y. Park, M. Kulishov, R. Morandotti, and J. Azaña, Opt. Express 14, 10699 (2006).
    [CrossRef]
  2. C. Cuadrado-Laborde and M. V. Andrés, Opt. Lett. 34, 833 (2009).
    [CrossRef]
  3. L. M. Rivas, K. Singh, A. Carballar, and J. Azaña, IEEE Photon. Technol. Lett. 19, 1209 (2007).
    [CrossRef]
  4. J. Dong, A. Zheng, D. Gao, L. Lei, D. Huang, and X. Zhang, Opt. Express 21, 7014 (2013).
    [CrossRef]
  5. M. Li, D. Janner, J. Yao, and V. Pruneri, Opt. Express 17, 19798 (2009).
    [CrossRef]
  6. N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, Opt. Express 15, 371 (2007).
    [CrossRef]
  7. Y. Park, J. Azaña, and R. Slavík, Opt. Lett. 32, 710 (2007).
    [CrossRef]
  8. J. Dong, Y. Yu, Y. Zhang, B. Luo, T. Yang, and X. Zhang, IEEE Photon. Technol. Lett. 3, 996 (2011).
  9. F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, Opt. Express 16, 15880 (2008).
    [CrossRef]
  10. J. Xu, X. Zhang, J. Dong, D. Liu, and D. Huang, Opt. Lett. 32, 1872 (2007).
    [CrossRef]
  11. H. Zhang, M. Tang, Y. Xie, H. Liao, S. Fu, P. P. Shum, and D. Liu, Appl. Phys. B. 112, 479 (2013).
  12. N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
    [CrossRef]
  13. L. M. Rivas, S. Boudreau, Y. Park, R. Slavik, S. LaRochelle, A. Carballar, and J. Azana, Opt. Lett. 34, 1792 (2009).
    [CrossRef]
  14. M. Kulishov and J. Azaña, Opt. Express 15, 6152 (2007).
    [CrossRef]
  15. M. Kulishov, D. Krcmarík, and R. Slavík, Opt. Lett. 32, 2978 (2007).
    [CrossRef]

2013 (2)

J. Dong, A. Zheng, D. Gao, L. Lei, D. Huang, and X. Zhang, Opt. Express 21, 7014 (2013).
[CrossRef]

H. Zhang, M. Tang, Y. Xie, H. Liao, S. Fu, P. P. Shum, and D. Liu, Appl. Phys. B. 112, 479 (2013).

2011 (1)

J. Dong, Y. Yu, Y. Zhang, B. Luo, T. Yang, and X. Zhang, IEEE Photon. Technol. Lett. 3, 996 (2011).

2009 (3)

2008 (1)

2007 (6)

2006 (1)

2004 (1)

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Andrés, M. V.

Azana, J.

Azaña, J.

Berger, N. K.

Boudreau, S.

Carballar, A.

L. M. Rivas, S. Boudreau, Y. Park, R. Slavik, S. LaRochelle, A. Carballar, and J. Azana, Opt. Lett. 34, 1792 (2009).
[CrossRef]

L. M. Rivas, K. Singh, A. Carballar, and J. Azaña, IEEE Photon. Technol. Lett. 19, 1209 (2007).
[CrossRef]

Cuadrado-Laborde, C.

Dong, J.

Fischer, B.

Fu, S.

H. Zhang, M. Tang, Y. Xie, H. Liao, S. Fu, P. P. Shum, and D. Liu, Appl. Phys. B. 112, 479 (2013).

Gao, D.

Huang, D.

Janner, D.

Kam, C. H.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Krcmarík, D.

Kulishov, M.

LaRochelle, S.

Lei, L.

Levit, B.

Li, M.

Liao, H.

H. Zhang, M. Tang, Y. Xie, H. Liao, S. Fu, P. P. Shum, and D. Liu, Appl. Phys. B. 112, 479 (2013).

Liu, D.

H. Zhang, M. Tang, Y. Xie, H. Liao, S. Fu, P. P. Shum, and D. Liu, Appl. Phys. B. 112, 479 (2013).

J. Xu, X. Zhang, J. Dong, D. Liu, and D. Huang, Opt. Lett. 32, 1872 (2007).
[CrossRef]

Liu, F.

Luo, B.

J. Dong, Y. Yu, Y. Zhang, B. Luo, T. Yang, and X. Zhang, IEEE Photon. Technol. Lett. 3, 996 (2011).

Morandotti, R.

Ngo, N. Q.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Park, Y.

Plant, D. V.

Pruneri, V.

Qiang, L.

Qiu, M.

Rivas, L. M.

L. M. Rivas, S. Boudreau, Y. Park, R. Slavik, S. LaRochelle, A. Carballar, and J. Azana, Opt. Lett. 34, 1792 (2009).
[CrossRef]

L. M. Rivas, K. Singh, A. Carballar, and J. Azaña, IEEE Photon. Technol. Lett. 19, 1209 (2007).
[CrossRef]

Shum, P. P.

H. Zhang, M. Tang, Y. Xie, H. Liao, S. Fu, P. P. Shum, and D. Liu, Appl. Phys. B. 112, 479 (2013).

Singh, K.

L. M. Rivas, K. Singh, A. Carballar, and J. Azaña, IEEE Photon. Technol. Lett. 19, 1209 (2007).
[CrossRef]

Slavik, R.

Slavík, R.

Su, Y.

Tang, M.

H. Zhang, M. Tang, Y. Xie, H. Liao, S. Fu, P. P. Shum, and D. Liu, Appl. Phys. B. 112, 479 (2013).

Tjin, S. C.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Wang, T.

Xie, Y.

H. Zhang, M. Tang, Y. Xie, H. Liao, S. Fu, P. P. Shum, and D. Liu, Appl. Phys. B. 112, 479 (2013).

Xu, J.

Yang, T.

J. Dong, Y. Yu, Y. Zhang, B. Luo, T. Yang, and X. Zhang, IEEE Photon. Technol. Lett. 3, 996 (2011).

Yao, J.

Ye, T.

Yu, S. F.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Yu, Y.

J. Dong, Y. Yu, Y. Zhang, B. Luo, T. Yang, and X. Zhang, IEEE Photon. Technol. Lett. 3, 996 (2011).

Zhang, H.

H. Zhang, M. Tang, Y. Xie, H. Liao, S. Fu, P. P. Shum, and D. Liu, Appl. Phys. B. 112, 479 (2013).

Zhang, X.

Zhang, Y.

J. Dong, Y. Yu, Y. Zhang, B. Luo, T. Yang, and X. Zhang, IEEE Photon. Technol. Lett. 3, 996 (2011).

Zhang, Z.

Zheng, A.

Appl. Phys. B. (1)

H. Zhang, M. Tang, Y. Xie, H. Liao, S. Fu, P. P. Shum, and D. Liu, Appl. Phys. B. 112, 479 (2013).

IEEE Photon. Technol. Lett. (2)

L. M. Rivas, K. Singh, A. Carballar, and J. Azaña, IEEE Photon. Technol. Lett. 19, 1209 (2007).
[CrossRef]

J. Dong, Y. Yu, Y. Zhang, B. Luo, T. Yang, and X. Zhang, IEEE Photon. Technol. Lett. 3, 996 (2011).

Opt. Commun. (1)

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Opt. Express (6)

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Experimental setup of the proposed OTD.

Fig. 2.
Fig. 2.

Schematic diagram of the proposed OTD.

Fig. 3.
Fig. 3.

(a) Transmission spectrum of the LCFBG. (b) Transfer functions of a second-order differentiator.

Fig. 4.
Fig. 4.

Spectrum of the optical pulse. (a) The initial MLFL output. (b) Optical pulse filtered by the pre-shaper.

Fig. 5.
Fig. 5.

Normalized output pulse spectrum of the OTD.

Fig. 6.
Fig. 6.

Waveforms of the optical pulses.

Fig. 7.
Fig. 7.

Processing error as a function of the 3 dB bandwidth of the input pulse

Fig. 8.
Fig. 8.

Relationship between the notch center and the heating position.

Fig. 9.
Fig. 9.

Transmission spectra of the notches with three different heating positions.

Metrics