Abstract

We have developed a modality for quantitative phase imaging within spectral domain optical coherence tomography based on using an off-axis reference beam. By tilting the propagation of the reference beam relative to that of the sample beam, a spatially varying fringe is generated. Upon detection of this fringe using a parallel spectral domain scheme, the fringe can be used to separate the interference component of the signal and obtain the complex sample field. In addition to providing quantitative phase measurements within a depth resolved measurement, this approach also allows elimination of the complex conjugate artifact, a known limitation of spectral interferometry. The principle of the approach is described here along with demonstration of its capabilities using technical samples.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).
  2. N. T. Shaked, M. T. Rinehart, and A. Wax, in Coherent Light Microscopy, P. Ferraro, A. Wax, and Z. Zalevsky, eds. (Springer, 2011), pp. 169–198.
  3. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, Opt. Lett. 30, 2131 (2005).
    [CrossRef]
  4. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, Opt. Lett. 30, 1162 (2005).
    [CrossRef]
  5. R. K. Wang and A. L. Nuttall, J. Biomed. Opt. 15, 056005 (2010).
    [CrossRef]
  6. F. Helderman, B. Haslam, J. F. de Boer, and M. de Groot, Opt. Lett. 38, 431 (2013).
    [CrossRef]
  7. M. V. Sarunic, S. Weinberg, and J. A. Izatt, Opt. Lett. 31, 1462 (2006).
    [CrossRef]
  8. W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, Opt. Lett. 38, 338 (2013).
    [CrossRef]
  9. B. Grajciar, Y. Lehareinger, A. F. Fercher, and R. A. Leitgeb, Opt. Express 18, 21841 (2010).
    [CrossRef]
  10. F. E. Robles, L. L. Satterwhite, and A. Wax, Opt. Lett. 36, 4665 (2011).
    [CrossRef]
  11. A.-H. Dhalla and J. A. Izatt, Biomed. Opt. Express 2, 1218 (2011).
    [CrossRef]
  12. R. N. Graf, W. J. Brown, and A. Wax, Opt. Lett. 33, 1285 (2008).
    [CrossRef]
  13. D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, Proc. SPIE 8571, 857104 (2013).
    [CrossRef]
  14. S. Witte, A. Plauşka, M. C. Ridder, L. van Berge, H. D. Mansvelder, and M. L. Groot, Biomed. Opt. Express 3, 2184 (2012).
    [CrossRef]
  15. M. Rinehart, Y. Zhu, and A. Wax, Biomed. Opt. Express 3, 958 (2012).
    [CrossRef]

2013 (3)

2012 (2)

2011 (2)

2010 (2)

2008 (1)

2006 (1)

2005 (2)

Akkin, T.

Baumann, B.

Bonin, T.

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, Proc. SPIE 8571, 857104 (2013).
[CrossRef]

Brown, W. J.

Cable, A. E.

Cense, B.

Choi, W.

Choma, M. A.

Creazzo, T. L.

de Boer, J. F.

de Groot, M.

Dhalla, A.-H.

Duker, J. S.

Ellerbee, A. K.

Fercher, A. F.

Franke, G.

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, Proc. SPIE 8571, 857104 (2013).
[CrossRef]

Fujimoto, J. G.

Graf, R. N.

Grajciar, B.

Groot, M. L.

Grulkowski, I.

Haslam, B.

Helderman, F.

Hillmann, D.

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, Proc. SPIE 8571, 857104 (2013).
[CrossRef]

Hinkel, L.

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, Proc. SPIE 8571, 857104 (2013).
[CrossRef]

Huang, D.

Hüttmann, G.

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, Proc. SPIE 8571, 857104 (2013).
[CrossRef]

Izatt, J. A.

Jayaraman, V.

Joo, C.

Koch, P.

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, Proc. SPIE 8571, 857104 (2013).
[CrossRef]

Lehareinger, Y.

Leitgeb, R. A.

Liu, J. J.

Lu, C. D.

Mansvelder, H. D.

Nuttall, A. L.

R. K. Wang and A. L. Nuttall, J. Biomed. Opt. 15, 056005 (2010).
[CrossRef]

Park, B. H.

Plauska, A.

Popescu, G.

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).

Potsaid, B.

Ridder, M. C.

Rinehart, M.

Rinehart, M. T.

N. T. Shaked, M. T. Rinehart, and A. Wax, in Coherent Light Microscopy, P. Ferraro, A. Wax, and Z. Zalevsky, eds. (Springer, 2011), pp. 169–198.

Robles, F. E.

Sarunic, M. V.

Satterwhite, L. L.

Shaked, N. T.

N. T. Shaked, M. T. Rinehart, and A. Wax, in Coherent Light Microscopy, P. Ferraro, A. Wax, and Z. Zalevsky, eds. (Springer, 2011), pp. 169–198.

van Berge, L.

Wang, R. K.

R. K. Wang and A. L. Nuttall, J. Biomed. Opt. 15, 056005 (2010).
[CrossRef]

Wax, A.

Weinberg, S.

Witte, S.

Yang, C.

Zhu, Y.

Biomed. Opt. Express (3)

J. Biomed. Opt. (1)

R. K. Wang and A. L. Nuttall, J. Biomed. Opt. 15, 056005 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (7)

Proc. SPIE (1)

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, Proc. SPIE 8571, 857104 (2013).
[CrossRef]

Other (2)

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).

N. T. Shaked, M. T. Rinehart, and A. Wax, in Coherent Light Microscopy, P. Ferraro, A. Wax, and Z. Zalevsky, eds. (Springer, 2011), pp. 169–198.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of PSD OCT system. The properties of lenses L1-L4 are given in the figure. The tilted mirror in the reference arm causes the reference beam to cross the spectrometer slit at an angle relative to the sample field, producing a spatially varying fringe across the slit.

Fig. 2.
Fig. 2.

Typical interferogram for off axis PSD-OCT approach. (A) Signal across broad spatial and spectral ranges. (B) Inset from (A), illustrating the tilted fringe.

Fig. 3.
Fig. 3.

Fourier transform of interferogram in Fig. 1, illustrating separation of interferometric term from autocorrelation terms as a function of spatial frequency (fx) and wavelength (log scale magnitude). Spatial carrier frequency varies with wavelength and the complex conjugate (CC) of this term is visible at the negative spatial frequency.

Fig. 4.
Fig. 4.

Demodulated data showing both amplitude (A) and phase (C), where discontinuities due to wavelength shift of spatial carrier frequency are seen. (B) Amplitude and (D) phase map after referencing to pure reflector.

Fig. 5.
Fig. 5.

(A) Processed data presented as a B-scan, inset shows logarithmic scale of one A-scan, at location of white dotted line, to illustrate CC suppression. (B) Phase varies parabolically. (C) After subtracting trend, phase standard deviation is 16.1 mrad, corresponding to an OPL sensitivity of 0.77 nm.

Fig. 6.
Fig. 6.

Imaging example showing difference in resolution between vertical and horizontal directions due to processing of off-axis interferogram.

Fig. 7.
Fig. 7.

Volumetric rendering of three-dimensional phase sample. Since the third dimension is scanned by physical translating the sample, there is a significant loss of phase stability in this direction.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I(x,λ)=Iref(x,λ)+Isam(x,λ)+2IrefIsamcos(ϕ(x,λ)),

Metrics