Abstract

Azimuthal and radial polarization states of light are used to produce conical diffraction (CD) from a KGd(WO4)2 crystal. The patterns produced in the ring plane in each case display marked differences than those seen when linearly polarized incident light is used, with the production of a splitting of the CD ring into two concentric rings of equal intensity. The free space evolution for each type of polarization state is also experimentally recorded and investigated. Comparison with theory shows agreement with the experimentally observed results.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Hamilton, Trans. R. Irish Acad. 17, 1 (1837).
  2. H. Lloyd, Philos. Mag. 1(8), 112 (1833).
    [CrossRef]
  3. J. C. Poggendorff, Pogg. Ann. 48, 461 (1839).
  4. C. V. Raman, Nature 149, 552 (1942).
    [CrossRef]
  5. S. D. Grant and A. Abdolvand, Opt. Lett. 37, 5226 (2012).
    [CrossRef]
  6. A. M. Belskii and A. P. Khapaluyk, Opt. Spectrosc. 44, 436 (1978).
  7. M. V. Berry, J. Opt. A 6, 289 (2004).
    [CrossRef]
  8. J. G. Lunney and D. W. Weaire, Europhys. News 37(3), 26 (2006).
    [CrossRef]
  9. M. V. Berry and M. R. Jeffrey, J. Opt. A 8, 1043 (2006).
    [CrossRef]
  10. M. V. Berry and M. R. Jeffrey, Prog. Opt. 50, 13 (2007).
    [CrossRef]
  11. M. V. Berry, M. R. Jeffrey, and J. G. Lunney, Proc. R. Soc. A 462, 1629 (2006).
    [CrossRef]
  12. C. F. Phelan, J. F. Donegan, and J. G. Lunney, Opt. Express 19, 21793 (2011).
    [CrossRef]
  13. A. Turpin, Y. Loiko, T. K. Kalkandjiev, H. Tomizawa, and J. Mompart, Opt. Express 21, 4503 (2013).
    [CrossRef]
  14. A. Turpin, Y. Loiko, T. K. Kalkandjiev, and J. Mompart, Opt. Lett. 37, 4197 (2012).
    [CrossRef]
  15. V. Peet, J. Opt. 12, 095706 (2010).
    [CrossRef]
  16. A. Abdolvand, K. G. Wilcox, T. K. Kalkandjiev, and E. U. Rafailov, Opt. Express 18, 2753 (2010).
    [CrossRef]
  17. V. Peet, Opt. Lett. 36, 2913 (2011).
    [CrossRef]
  18. C. F. Phelan, D. P. O’Dwyer, Y. P. Pakovich, J. P. Donegan, and J. G. Lunney, Opt. Express 17, 12891 (2009).
    [CrossRef]

2013 (1)

2012 (2)

2011 (2)

2010 (2)

2009 (1)

2007 (1)

M. V. Berry and M. R. Jeffrey, Prog. Opt. 50, 13 (2007).
[CrossRef]

2006 (3)

M. V. Berry, M. R. Jeffrey, and J. G. Lunney, Proc. R. Soc. A 462, 1629 (2006).
[CrossRef]

J. G. Lunney and D. W. Weaire, Europhys. News 37(3), 26 (2006).
[CrossRef]

M. V. Berry and M. R. Jeffrey, J. Opt. A 8, 1043 (2006).
[CrossRef]

2004 (1)

M. V. Berry, J. Opt. A 6, 289 (2004).
[CrossRef]

1978 (1)

A. M. Belskii and A. P. Khapaluyk, Opt. Spectrosc. 44, 436 (1978).

1942 (1)

C. V. Raman, Nature 149, 552 (1942).
[CrossRef]

1839 (1)

J. C. Poggendorff, Pogg. Ann. 48, 461 (1839).

1837 (1)

W. R. Hamilton, Trans. R. Irish Acad. 17, 1 (1837).

1833 (1)

H. Lloyd, Philos. Mag. 1(8), 112 (1833).
[CrossRef]

Abdolvand, A.

Belskii, A. M.

A. M. Belskii and A. P. Khapaluyk, Opt. Spectrosc. 44, 436 (1978).

Berry, M. V.

M. V. Berry and M. R. Jeffrey, Prog. Opt. 50, 13 (2007).
[CrossRef]

M. V. Berry and M. R. Jeffrey, J. Opt. A 8, 1043 (2006).
[CrossRef]

M. V. Berry, M. R. Jeffrey, and J. G. Lunney, Proc. R. Soc. A 462, 1629 (2006).
[CrossRef]

M. V. Berry, J. Opt. A 6, 289 (2004).
[CrossRef]

Donegan, J. F.

Donegan, J. P.

Grant, S. D.

Hamilton, W. R.

W. R. Hamilton, Trans. R. Irish Acad. 17, 1 (1837).

Jeffrey, M. R.

M. V. Berry and M. R. Jeffrey, Prog. Opt. 50, 13 (2007).
[CrossRef]

M. V. Berry and M. R. Jeffrey, J. Opt. A 8, 1043 (2006).
[CrossRef]

M. V. Berry, M. R. Jeffrey, and J. G. Lunney, Proc. R. Soc. A 462, 1629 (2006).
[CrossRef]

Kalkandjiev, T. K.

Khapaluyk, A. P.

A. M. Belskii and A. P. Khapaluyk, Opt. Spectrosc. 44, 436 (1978).

Lloyd, H.

H. Lloyd, Philos. Mag. 1(8), 112 (1833).
[CrossRef]

Loiko, Y.

Lunney, J. G.

Mompart, J.

O’Dwyer, D. P.

Pakovich, Y. P.

Peet, V.

Phelan, C. F.

Poggendorff, J. C.

J. C. Poggendorff, Pogg. Ann. 48, 461 (1839).

Rafailov, E. U.

Raman, C. V.

C. V. Raman, Nature 149, 552 (1942).
[CrossRef]

Tomizawa, H.

Turpin, A.

Weaire, D. W.

J. G. Lunney and D. W. Weaire, Europhys. News 37(3), 26 (2006).
[CrossRef]

Wilcox, K. G.

Europhys. News (1)

J. G. Lunney and D. W. Weaire, Europhys. News 37(3), 26 (2006).
[CrossRef]

J. Opt. (1)

V. Peet, J. Opt. 12, 095706 (2010).
[CrossRef]

J. Opt. A (2)

M. V. Berry and M. R. Jeffrey, J. Opt. A 8, 1043 (2006).
[CrossRef]

M. V. Berry, J. Opt. A 6, 289 (2004).
[CrossRef]

Nature (1)

C. V. Raman, Nature 149, 552 (1942).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Opt. Spectrosc. (1)

A. M. Belskii and A. P. Khapaluyk, Opt. Spectrosc. 44, 436 (1978).

Philos. Mag. (1)

H. Lloyd, Philos. Mag. 1(8), 112 (1833).
[CrossRef]

Pogg. Ann. (1)

J. C. Poggendorff, Pogg. Ann. 48, 461 (1839).

Proc. R. Soc. A (1)

M. V. Berry, M. R. Jeffrey, and J. G. Lunney, Proc. R. Soc. A 462, 1629 (2006).
[CrossRef]

Prog. Opt. (1)

M. V. Berry and M. R. Jeffrey, Prog. Opt. 50, 13 (2007).
[CrossRef]

Trans. R. Irish Acad. (1)

W. R. Hamilton, Trans. R. Irish Acad. 17, 1 (1837).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup consists of a Gaussian incident beam, whose polarization is controlled by a half-wave plate, a two-lens telescopic system, an S-waveplate, a focusing lens, and the CD crystal. The inset shows the beam profile incident on the crystal after the focusing lens for linearly, azimuthally, and radially polarized light.

Fig. 2.
Fig. 2.

Top row shows the CD pattern in free space for linearly polarized light. The middle row shows the CD pattern resulting from the incident azimuthally polarized beam. The bottom row shows the same images but for a radially polarized incident beam.

Fig. 3.
Fig. 3.

Intensity distribution in the ring plane for the azimuthally (black solid line), radially (red dashed line), and linearly (green dashed–dotted line) polarized incident light.

Fig. 4.
Fig. 4.

Top row shows the case of a vertically polarized incident beam and the pattern with a polarizer in four positions, vertical, horizontal, 45°, and 135°. The middle and bottom rows show the same series of images for azimuthal and radial polarized incident beam, respectively.

Fig. 5.
Fig. 5.

Theoretical images for azimuthal (left) and radial (right) polarizations of incident light.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I(φ)=cos2(χ(φ)2),
χaz(φ)=φπ,
χrad(φ)=φ.

Metrics