Abstract

In this Letter, we report on a novel method for measuring atmospheric temperature profiles by lidar during daytime for heights of 2–15.3 km, with a vertical resolution of 0.3–2.2 km, using Rayleigh–Brillouin scattering. The measurements are performed by scanning a laser (λ=355nm) over a 12 GHz range and using a Fabry–Pérot interferometer as discriminator. The temperature is derived by using a new analytical line shape model assuming standard atmospheric pressure conditions. Two exemplary temperature profiles resulting from measurements over 14 and 27 min are shown. A comparison with radiosonde temperature measurements shows reasonable agreement. In cloud-free conditions, the temperature difference reaches up to 5 K within the boundary layer, and is smaller than 2.5 K above. The statistical error of the derived temperatures is between 0.15 and 1.5 K.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Greding, and J. Höffner, Atmos. Chem. Phys. 4, 793 (2004).
    [CrossRef]
  2. A. Behrendt, T. Nakamura, and T. Tsuda, Appl. Opt. 43, 2930 (2004).
    [CrossRef]
  3. M. Radlach, A. Behrendt, and V. Wulfmeyer, Atmos. Chem. Phys. 8, 159 (2008).
    [CrossRef]
  4. A. Behrendt and J. Reichardt, Appl. Opt. 39, 1372 (2000).
    [CrossRef]
  5. M. Fraczek, A. Behrendt, and N. Schmitt, Appl. Opt. 51, 148 (2012).
    [CrossRef]
  6. P. Di Girolamo, A. Behrendt, and V. Wulfmeyer, Appl. Opt. 45, 2474 (2006).
    [CrossRef]
  7. B. Witschas, in Atmospheric Physics: Background—Methods—Trends, U. Schumann, ed. (Springer, 2012), pp. 69–83.
  8. R. L. Schwiesow and L. Lading, Appl. Opt. 20, 1972 (1981).
    [CrossRef]
  9. C. Y. She, R. J. Alvarez, L. M. Caldwell, and D. A. Krueger, Opt. Lett. 17, 541 (1992).
    [CrossRef]
  10. R. Alvarez, L. Caldwell, P. Wolyn, D. Krueger, T. McKee, and C. She, J. Atmos. Ocean. Technol. 10, 546 (1993).
    [CrossRef]
  11. G. Tenti, C. Boley, and R. Desai, Can. J. Phys. 52, 285 (1974).
  12. J. Hair, L. Caldwell, D. Krueger, and C. She, Appl. Opt. 40, 5280 (2001).
    [CrossRef]
  13. D. Hua, M. Uchida, and T. Kobayashi, Appl. Opt. 44, 1315 (2005).
    [CrossRef]
  14. B. Witschas, Appl. Opt. 50, 267 (2011).
    [CrossRef]
  15. B. Witschas, Appl. Opt. 50, 5758 (2011).
    [CrossRef]
  16. European Space Agency, (European Space Research and Technology Centre, 2008).
  17. O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, J. Atmos. Ocean. Technol. 26, 2501 (2009).
    [CrossRef]
  18. B. Witschas, C. Lemmerz, and O. Reitebuch, Appl. Opt. 51, 6207 (2012).
    [CrossRef]
  19. B. Witschas, M. O. Vieitez, E.-J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, Appl. Opt. 49, 4217 (2010).
    [CrossRef]
  20. M. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, Phys. Rev. A 82, 1094 (2010).
    [CrossRef]
  21. N. Hagen, M. Kupinski, and E. L. Dereniak, Appl. Opt. 46, 5374 (2007).
    [CrossRef]

2012 (2)

2011 (2)

2010 (2)

B. Witschas, M. O. Vieitez, E.-J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, Appl. Opt. 49, 4217 (2010).
[CrossRef]

M. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, Phys. Rev. A 82, 1094 (2010).
[CrossRef]

2009 (1)

O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, J. Atmos. Ocean. Technol. 26, 2501 (2009).
[CrossRef]

2008 (1)

M. Radlach, A. Behrendt, and V. Wulfmeyer, Atmos. Chem. Phys. 8, 159 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (1)

2004 (2)

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Greding, and J. Höffner, Atmos. Chem. Phys. 4, 793 (2004).
[CrossRef]

A. Behrendt, T. Nakamura, and T. Tsuda, Appl. Opt. 43, 2930 (2004).
[CrossRef]

2001 (1)

2000 (1)

1993 (1)

R. Alvarez, L. Caldwell, P. Wolyn, D. Krueger, T. McKee, and C. She, J. Atmos. Ocean. Technol. 10, 546 (1993).
[CrossRef]

1992 (1)

1981 (1)

1974 (1)

G. Tenti, C. Boley, and R. Desai, Can. J. Phys. 52, 285 (1974).

Alpers, M.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Greding, and J. Höffner, Atmos. Chem. Phys. 4, 793 (2004).
[CrossRef]

Alvarez, R.

R. Alvarez, L. Caldwell, P. Wolyn, D. Krueger, T. McKee, and C. She, J. Atmos. Ocean. Technol. 10, 546 (1993).
[CrossRef]

Alvarez, R. J.

Behrendt, A.

Boley, C.

G. Tenti, C. Boley, and R. Desai, Can. J. Phys. 52, 285 (1974).

Caldwell, L.

J. Hair, L. Caldwell, D. Krueger, and C. She, Appl. Opt. 40, 5280 (2001).
[CrossRef]

R. Alvarez, L. Caldwell, P. Wolyn, D. Krueger, T. McKee, and C. She, J. Atmos. Ocean. Technol. 10, 546 (1993).
[CrossRef]

Caldwell, L. M.

Dam, N.

M. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, Phys. Rev. A 82, 1094 (2010).
[CrossRef]

de Wijn, A.

M. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, Phys. Rev. A 82, 1094 (2010).
[CrossRef]

Dereniak, E. L.

Desai, R.

G. Tenti, C. Boley, and R. Desai, Can. J. Phys. 52, 285 (1974).

Di Girolamo, P.

Eixmann, R.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Greding, and J. Höffner, Atmos. Chem. Phys. 4, 793 (2004).
[CrossRef]

Fraczek, M.

Fricke-Begemann, C.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Greding, and J. Höffner, Atmos. Chem. Phys. 4, 793 (2004).
[CrossRef]

Greding, M.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Greding, and J. Höffner, Atmos. Chem. Phys. 4, 793 (2004).
[CrossRef]

Hagen, N.

Hair, J.

Höffner, J.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Greding, and J. Höffner, Atmos. Chem. Phys. 4, 793 (2004).
[CrossRef]

Hua, D.

Kobayashi, T.

Krueger, D.

J. Hair, L. Caldwell, D. Krueger, and C. She, Appl. Opt. 40, 5280 (2001).
[CrossRef]

R. Alvarez, L. Caldwell, P. Wolyn, D. Krueger, T. McKee, and C. She, J. Atmos. Ocean. Technol. 10, 546 (1993).
[CrossRef]

Krueger, D. A.

Kupinski, M.

Lading, L.

Lemmerz, C.

B. Witschas, C. Lemmerz, and O. Reitebuch, Appl. Opt. 51, 6207 (2012).
[CrossRef]

O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, J. Atmos. Ocean. Technol. 26, 2501 (2009).
[CrossRef]

McKee, T.

R. Alvarez, L. Caldwell, P. Wolyn, D. Krueger, T. McKee, and C. She, J. Atmos. Ocean. Technol. 10, 546 (1993).
[CrossRef]

Meijer, A.

M. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, Phys. Rev. A 82, 1094 (2010).
[CrossRef]

Nagel, E.

O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, J. Atmos. Ocean. Technol. 26, 2501 (2009).
[CrossRef]

Nakamura, T.

Paffrath, U.

O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, J. Atmos. Ocean. Technol. 26, 2501 (2009).
[CrossRef]

Radlach, M.

M. Radlach, A. Behrendt, and V. Wulfmeyer, Atmos. Chem. Phys. 8, 159 (2008).
[CrossRef]

Reichardt, J.

Reitebuch, O.

Schmitt, N.

Schwiesow, R. L.

She, C.

J. Hair, L. Caldwell, D. Krueger, and C. She, Appl. Opt. 40, 5280 (2001).
[CrossRef]

R. Alvarez, L. Caldwell, P. Wolyn, D. Krueger, T. McKee, and C. She, J. Atmos. Ocean. Technol. 10, 546 (1993).
[CrossRef]

She, C. Y.

Tenti, G.

G. Tenti, C. Boley, and R. Desai, Can. J. Phys. 52, 285 (1974).

Tsuda, T.

Ubachs, W.

B. Witschas, M. O. Vieitez, E.-J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, Appl. Opt. 49, 4217 (2010).
[CrossRef]

M. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, Phys. Rev. A 82, 1094 (2010).
[CrossRef]

Uchida, M.

van de Water, W.

B. Witschas, M. O. Vieitez, E.-J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, Appl. Opt. 49, 4217 (2010).
[CrossRef]

M. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, Phys. Rev. A 82, 1094 (2010).
[CrossRef]

van Duijn, E.-J.

M. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, Phys. Rev. A 82, 1094 (2010).
[CrossRef]

B. Witschas, M. O. Vieitez, E.-J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, Appl. Opt. 49, 4217 (2010).
[CrossRef]

Vieitez, M.

M. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, Phys. Rev. A 82, 1094 (2010).
[CrossRef]

Vieitez, M. O.

Witschas, B.

B. Witschas, C. Lemmerz, and O. Reitebuch, Appl. Opt. 51, 6207 (2012).
[CrossRef]

B. Witschas, Appl. Opt. 50, 267 (2011).
[CrossRef]

B. Witschas, Appl. Opt. 50, 5758 (2011).
[CrossRef]

B. Witschas, M. O. Vieitez, E.-J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, Appl. Opt. 49, 4217 (2010).
[CrossRef]

M. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, Phys. Rev. A 82, 1094 (2010).
[CrossRef]

B. Witschas, in Atmospheric Physics: Background—Methods—Trends, U. Schumann, ed. (Springer, 2012), pp. 69–83.

Wolyn, P.

R. Alvarez, L. Caldwell, P. Wolyn, D. Krueger, T. McKee, and C. She, J. Atmos. Ocean. Technol. 10, 546 (1993).
[CrossRef]

Wulfmeyer, V.

M. Radlach, A. Behrendt, and V. Wulfmeyer, Atmos. Chem. Phys. 8, 159 (2008).
[CrossRef]

P. Di Girolamo, A. Behrendt, and V. Wulfmeyer, Appl. Opt. 45, 2474 (2006).
[CrossRef]

Appl. Opt. (12)

Atmos. Chem. Phys. (2)

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Greding, and J. Höffner, Atmos. Chem. Phys. 4, 793 (2004).
[CrossRef]

M. Radlach, A. Behrendt, and V. Wulfmeyer, Atmos. Chem. Phys. 8, 159 (2008).
[CrossRef]

Can. J. Phys. (1)

G. Tenti, C. Boley, and R. Desai, Can. J. Phys. 52, 285 (1974).

J. Atmos. Ocean. Technol. (2)

O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, J. Atmos. Ocean. Technol. 26, 2501 (2009).
[CrossRef]

R. Alvarez, L. Caldwell, P. Wolyn, D. Krueger, T. McKee, and C. She, J. Atmos. Ocean. Technol. 10, 546 (1993).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

M. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, Phys. Rev. A 82, 1094 (2010).
[CrossRef]

Other (2)

European Space Agency, (European Space Research and Technology Centre, 2008).

B. Witschas, in Atmospheric Physics: Background—Methods—Trends, U. Schumann, ed. (Springer, 2012), pp. 69–83.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Sketch of the lidar setup. LPO, low power oscillator; SHG and THG, second and third harmonic generation; FPI, Fabry–Pérot interferometer; ACCD, accumulation charged coupled device; FC, fiber coupler.

Fig. 2.
Fig. 2.

Measured RB line shapes for different distances from the lidar (dots) and best-fits using Eq. 1 (lines).

Fig. 3.
Fig. 3.

Left: temperature profiles derived from lidar measurements (dots, red line), compared with temperatures measured by radiosonde (black line). Right: difference between radiosonde and lidar temperatures.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M(f)=I(f)*A(f)*S(T,p,f),
T(f)=1ΓFSR(1+2k=1Rkcos(2πkfΓFSR)exp(2π2k2σg2ΓFSR2)),
S(T,p,f)=Imol·Smol(T,p,f)+Ipar·Spar(f),
σT=(189.43K+1.21·T)·N(1/2).

Metrics