Abstract

A kind of sensing scheme is theoretically proposed to efficiently tune the response range of a fiber-optic refractometer based on the adiabatic transmission of the higher-order LP11 mode. Near the cut-off condition, transmission of the LP11 mode is a strong function of the refractive index (RI) under detection; thus high sensitivity is achieved. The cut-off RI value is dependent on the waist diameter; therefore the response RI range with high sensitivity can be changed just by altering the waist diameter. Theoretical calculations reveal that the response range is effectively tuned from 1.43–1.438 to 1.35–1.365 when the waist diameter is reduced from 2.5 to 1 μm. The proposed fiber-optic sensor is also superior when used as an absorbing sensor since the higher-order mode LP11 has a much larger power fraction in the evanescent field compared with the fundamental mode LP01 of the same fiber.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Villatoro, D. Monzón-Hernández, and D. Talavera, Electron. Lett. 40, 106 (2004).
    [CrossRef]
  2. B. Lee, S. Roh, and J. Park, Opt. Fiber Technol. 15, 209 (2009).
    [CrossRef]
  3. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
    [CrossRef]
  4. Q. Wu, Y. Semenova, B. Yan, Y. Ma, P. Wang, C. Yu, and G. Farrell, Opt. Lett. 36, 2197 (2011).
    [CrossRef]
  5. M. Han, F. Guo, and Y. Lu, Opt. Lett. 35, 399 (2010).
    [CrossRef]
  6. P. Wang, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Brambilla, and G. Farrell, Opt. Lett. 38, 3795 (2013).
    [CrossRef]
  7. G. Liu, K. Li, P. Hao, W. Zhou, Y. Wu, and M. Xuan, Sens. Actuators A Phys. 201, 352 (2013).
    [CrossRef]
  8. D. Monzón-Hernández, J. Villatoro, and D. Luna-Moreno, Sens. Actuators B Chem. 110, 36 (2005).
    [CrossRef]
  9. S. Guo and S. Albin, Opt. Express 11, 215 (2003).
    [CrossRef]
  10. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, Opt. Lett. 30, 1273 (2005).
    [CrossRef]
  11. L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, Lab Chip 11, 3726 (2011).
  12. G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, and M. Xuan, IEEE Photon. Technol. Lett. 24, 658 (2012).
    [CrossRef]
  13. W. Q. Thornburg, B. J. Corrado, and X. D. Zhu, Opt. Lett. 19, 454 (1994).
    [CrossRef]
  14. M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, Opt. Commun. 285, 4648 (2012).
    [CrossRef]
  15. L. C. Bobb, P. M. Shankar, and H. D. Krumboltz, J. Lightwave Technol. 8, 1084 (1990).
    [CrossRef]
  16. Y. Wu, X. Deng, F. Li, and X. Zhuang, Sens. Actuators B Chem. 122, 127 (2007).
  17. K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, Talanta 120, 419 (2014).
    [CrossRef]
  18. T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
    [CrossRef]
  19. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), Chap. 24.
  20. S. Lacroix, R. Bourbonnais, F. Gonthier, and J. Bures, Appl. Opt. 25, 4421 (1986).
    [CrossRef]

2014 (1)

K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, Talanta 120, 419 (2014).
[CrossRef]

2013 (2)

P. Wang, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Brambilla, and G. Farrell, Opt. Lett. 38, 3795 (2013).
[CrossRef]

G. Liu, K. Li, P. Hao, W. Zhou, Y. Wu, and M. Xuan, Sens. Actuators A Phys. 201, 352 (2013).
[CrossRef]

2012 (2)

G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, and M. Xuan, IEEE Photon. Technol. Lett. 24, 658 (2012).
[CrossRef]

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, Opt. Commun. 285, 4648 (2012).
[CrossRef]

2011 (2)

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, Lab Chip 11, 3726 (2011).

Q. Wu, Y. Semenova, B. Yan, Y. Ma, P. Wang, C. Yu, and G. Farrell, Opt. Lett. 36, 2197 (2011).
[CrossRef]

2010 (1)

2009 (1)

B. Lee, S. Roh, and J. Park, Opt. Fiber Technol. 15, 209 (2009).
[CrossRef]

2007 (1)

Y. Wu, X. Deng, F. Li, and X. Zhuang, Sens. Actuators B Chem. 122, 127 (2007).

2005 (3)

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, Opt. Lett. 30, 1273 (2005).
[CrossRef]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

D. Monzón-Hernández, J. Villatoro, and D. Luna-Moreno, Sens. Actuators B Chem. 110, 36 (2005).
[CrossRef]

2004 (1)

J. Villatoro, D. Monzón-Hernández, and D. Talavera, Electron. Lett. 40, 106 (2004).
[CrossRef]

2003 (1)

1994 (1)

1992 (1)

T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
[CrossRef]

1990 (1)

L. C. Bobb, P. M. Shankar, and H. D. Krumboltz, J. Lightwave Technol. 8, 1084 (1990).
[CrossRef]

1986 (1)

Albin, S.

Birks, T. A.

T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
[CrossRef]

Bo, L.

Bobb, L. C.

L. C. Bobb, P. M. Shankar, and H. D. Krumboltz, J. Lightwave Technol. 8, 1084 (1990).
[CrossRef]

Bourbonnais, R.

Brambilla, G.

Bures, J.

Chormaic, S. N.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, Opt. Commun. 285, 4648 (2012).
[CrossRef]

Corrado, B. J.

Deng, X.

Y. Wu, X. Deng, F. Li, and X. Zhuang, Sens. Actuators B Chem. 122, 127 (2007).

Farrell, G.

Frawley, M. C.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, Opt. Commun. 285, 4648 (2012).
[CrossRef]

Gonthier, F.

Guan, C.

Guo, F.

Guo, S.

Han, M.

Hao, P.

K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, Talanta 120, 419 (2014).
[CrossRef]

G. Liu, K. Li, P. Hao, W. Zhou, Y. Wu, and M. Xuan, Sens. Actuators A Phys. 201, 352 (2013).
[CrossRef]

G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, and M. Xuan, IEEE Photon. Technol. Lett. 24, 658 (2012).
[CrossRef]

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Krumboltz, H. D.

L. C. Bobb, P. M. Shankar, and H. D. Krumboltz, J. Lightwave Technol. 8, 1084 (1990).
[CrossRef]

Lacroix, S.

Lee, B.

B. Lee, S. Roh, and J. Park, Opt. Fiber Technol. 15, 209 (2009).
[CrossRef]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Li, F.

Y. Wu, X. Deng, F. Li, and X. Zhuang, Sens. Actuators B Chem. 122, 127 (2007).

Li, K.

K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, Talanta 120, 419 (2014).
[CrossRef]

G. Liu, K. Li, P. Hao, W. Zhou, Y. Wu, and M. Xuan, Sens. Actuators A Phys. 201, 352 (2013).
[CrossRef]

G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, and M. Xuan, IEEE Photon. Technol. Lett. 24, 658 (2012).
[CrossRef]

Li, Y. W.

T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
[CrossRef]

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Liu, G.

K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, Talanta 120, 419 (2014).
[CrossRef]

G. Liu, K. Li, P. Hao, W. Zhou, Y. Wu, and M. Xuan, Sens. Actuators A Phys. 201, 352 (2013).
[CrossRef]

G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, and M. Xuan, IEEE Photon. Technol. Lett. 24, 658 (2012).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), Chap. 24.

Lu, Y.

Luna-Moreno, D.

D. Monzón-Hernández, J. Villatoro, and D. Luna-Moreno, Sens. Actuators B Chem. 110, 36 (2005).
[CrossRef]

Ma, Y.

Mansuripur, M.

Monzón-Hernández, D.

D. Monzón-Hernández, J. Villatoro, and D. Luna-Moreno, Sens. Actuators B Chem. 110, 36 (2005).
[CrossRef]

J. Villatoro, D. Monzón-Hernández, and D. Talavera, Electron. Lett. 40, 106 (2004).
[CrossRef]

Park, J.

B. Lee, S. Roh, and J. Park, Opt. Fiber Technol. 15, 209 (2009).
[CrossRef]

Petcu-Colan, A.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, Opt. Commun. 285, 4648 (2012).
[CrossRef]

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Roh, S.

B. Lee, S. Roh, and J. Park, Opt. Fiber Technol. 15, 209 (2009).
[CrossRef]

Semenova, Y.

Shankar, P. M.

L. C. Bobb, P. M. Shankar, and H. D. Krumboltz, J. Lightwave Technol. 8, 1084 (1990).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), Chap. 24.

Talavera, D.

J. Villatoro, D. Monzón-Hernández, and D. Talavera, Electron. Lett. 40, 106 (2004).
[CrossRef]

Thornburg, W. Q.

Tong, L.

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, Lab Chip 11, 3726 (2011).

Truong, V. G.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, Opt. Commun. 285, 4648 (2012).
[CrossRef]

Villatoro, J.

D. Monzón-Hernández, J. Villatoro, and D. Luna-Moreno, Sens. Actuators B Chem. 110, 36 (2005).
[CrossRef]

J. Villatoro, D. Monzón-Hernández, and D. Talavera, Electron. Lett. 40, 106 (2004).
[CrossRef]

Wang, P.

Wu, Q.

Wu, Y.

K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, Talanta 120, 419 (2014).
[CrossRef]

G. Liu, K. Li, P. Hao, W. Zhou, Y. Wu, and M. Xuan, Sens. Actuators A Phys. 201, 352 (2013).
[CrossRef]

G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, and M. Xuan, IEEE Photon. Technol. Lett. 24, 658 (2012).
[CrossRef]

Y. Wu, X. Deng, F. Li, and X. Zhuang, Sens. Actuators B Chem. 122, 127 (2007).

Xiao, Y.

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, Lab Chip 11, 3726 (2011).

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Xuan, M.

G. Liu, K. Li, P. Hao, W. Zhou, Y. Wu, and M. Xuan, Sens. Actuators A Phys. 201, 352 (2013).
[CrossRef]

G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, and M. Xuan, IEEE Photon. Technol. Lett. 24, 658 (2012).
[CrossRef]

Yan, B.

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Yu, C.

Yu, H.

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, Lab Chip 11, 3726 (2011).

Zhang, L.

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, Lab Chip 11, 3726 (2011).

Zhang, P.

G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, and M. Xuan, IEEE Photon. Technol. Lett. 24, 658 (2012).
[CrossRef]

Zhang, Z.

K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, Talanta 120, 419 (2014).
[CrossRef]

Zhou, W.

K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, Talanta 120, 419 (2014).
[CrossRef]

G. Liu, K. Li, P. Hao, W. Zhou, Y. Wu, and M. Xuan, Sens. Actuators A Phys. 201, 352 (2013).
[CrossRef]

Zhu, X. D.

Zhuang, X.

Y. Wu, X. Deng, F. Li, and X. Zhuang, Sens. Actuators B Chem. 122, 127 (2007).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Electron. Lett. (1)

J. Villatoro, D. Monzón-Hernández, and D. Talavera, Electron. Lett. 40, 106 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, and M. Xuan, IEEE Photon. Technol. Lett. 24, 658 (2012).
[CrossRef]

J. Lightwave Technol. (2)

L. C. Bobb, P. M. Shankar, and H. D. Krumboltz, J. Lightwave Technol. 8, 1084 (1990).
[CrossRef]

T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
[CrossRef]

Lab Chip (1)

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, Lab Chip 11, 3726 (2011).

Opt. Commun. (1)

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, Opt. Commun. 285, 4648 (2012).
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (1)

B. Lee, S. Roh, and J. Park, Opt. Fiber Technol. 15, 209 (2009).
[CrossRef]

Opt. Lett. (5)

Sens. Actuators A Phys. (1)

G. Liu, K. Li, P. Hao, W. Zhou, Y. Wu, and M. Xuan, Sens. Actuators A Phys. 201, 352 (2013).
[CrossRef]

Sens. Actuators B Chem. (2)

D. Monzón-Hernández, J. Villatoro, and D. Luna-Moreno, Sens. Actuators B Chem. 110, 36 (2005).
[CrossRef]

Y. Wu, X. Deng, F. Li, and X. Zhuang, Sens. Actuators B Chem. 122, 127 (2007).

Talanta (1)

K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, Talanta 120, 419 (2014).
[CrossRef]

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), Chap. 24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic drawing of the proposed working principle of a tapered sensing fiber, which transmits the LP11 mode.

Fig. 2.
Fig. 2.

(a) Schematic model of an etched tapered fiber. Yellow, core; red, cladding; blue, RI under detection. (b) Transmission with respect to external RI for a tapered fiber with a 1.3 μm thick waist. Left column of insets illustrate the field distribution within meridian plane under the denoted external RI. Right column of insets illustrate field distribution over the cross section at mid-waist point, except the top one showing the input field of LP11 mode. (c) Transmission versus external RI at different waist diameters. Dashed vertical arrows denote the RI values (n1n5) corresponding to the cutoff of the LP11 mode at different waist diameters (denoted as Dw).

Fig. 3.
Fig. 3.

Power fraction in the core region as a function of V number for the six lowest-order modes. Upon cutoff, LP21 and LP31 have a large power fraction in the core region.

Fig. 4.
Fig. 4.

Transmitted power of tapered fibers with different waist diameters (denoted by Dw) as a function of external RI. Fibers 1, 2, and 3, which are designated as F1, F2, and F3, have Dw of 1.4, 1.8, and 2.2 μm, respectively. The input field consists of two modes LP01 and LP11, which have the equal initial power. For each fiber, total power, modal power of LP01, and modal power of LP11 are monitored simultaneously.

Fig. 5.
Fig. 5.

Power fraction in the evanescent field (denoted by η) versus fiber diameter (denoted by D).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V=πDλnco2ncl2,

Metrics