Abstract

Directional steerability can be obtained for an array of optical antennas through selective heating of the individual elements. Heating changes electrical conductivity of the heated element, which affects the phase of the generated currents. The variation in temperature can be obtained by modifying the biasing point of the individual elements of the array, which would allow fast reconfiguration. The numerical evaluation of the performance of an array of a reduced number of antennas (2 and 3) shows the feasibility of this approach.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Bharadwaj, B. Deutsch, and L. Novotny, Adv. Opt. Photon. 1, 438 (2009).
    [CrossRef]
  2. L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).
    [CrossRef]
  3. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
    [CrossRef]
  4. R. C. Hansen, Phased Array Antennas (Wiley, 1998).
  5. T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photonics 4, 312 (2010).
    [CrossRef]
  6. G. Rui, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Sci. Rep. 3, 2237 (2013).
    [CrossRef]
  7. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
    [CrossRef]
  8. F. J. Gonzalez, C. Fumeaux, J. Alda, and G. D. Boreman, Microw. Opt. Technol. Lett. 26, 291 (2000).
    [CrossRef]
  9. A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton. 6, 063512 (2012).
    [CrossRef]
  10. A. Cuadrado, M. Silva-López, F. J. González, and J. Alda, Opt. Lett. 38, 3784 (2013).
    [CrossRef]
  11. A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton.. 7, 073093 (2013).
    [CrossRef]
  12. D. Shelton, K. Coffey, and G. Boreman, Opt. Express 18, 1330 (2010).
    [CrossRef]
  13. J. Tharp, J. Lopez-Alonso, J. Ginn, C. Middleton, B. Lail, B. Munk, and G. Boreman, Opt. Lett. 31, 2687 (2006).
    [CrossRef]
  14. M. Silva-Lopez, A. Cuadrado, N. L. Lombart, and J. Alda, Opt. Express 21, 10867 (2013).
    [CrossRef]
  15. T. Mandviwala, B. Lail, and G. Boreman, Microw. Opt. Technol. Lett. 47, 17 (2005).
    [CrossRef]
  16. C. Middlebrook, P. Krenz, B. Lail, and G. Boreman, Microw. Opt. Technol. Lett. 50, 719 (2008).
    [CrossRef]
  17. T. Mandviwala, B. Lail, and G. Boreman, Microw. Opt. Technol. Lett. 50, 1232 (2008).
    [CrossRef]
  18. C. Balanis, Antenna Theory, 3rd ed. (Wiley-Interscience, 2005).
  19. L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef]
  20. J. Ginn, B. Lail, and G. Boreman, IEEE Trans. Antennas Propag. 55, 2989 (2007).
    [CrossRef]

2013 (5)

A. Cuadrado, M. Silva-López, F. J. González, and J. Alda, Opt. Lett. 38, 3784 (2013).
[CrossRef]

A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton.. 7, 073093 (2013).
[CrossRef]

G. Rui, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Sci. Rep. 3, 2237 (2013).
[CrossRef]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

M. Silva-Lopez, A. Cuadrado, N. L. Lombart, and J. Alda, Opt. Express 21, 10867 (2013).
[CrossRef]

2012 (1)

A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton. 6, 063512 (2012).
[CrossRef]

2011 (1)

L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).
[CrossRef]

2010 (2)

T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photonics 4, 312 (2010).
[CrossRef]

D. Shelton, K. Coffey, and G. Boreman, Opt. Express 18, 1330 (2010).
[CrossRef]

2009 (1)

2008 (3)

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

C. Middlebrook, P. Krenz, B. Lail, and G. Boreman, Microw. Opt. Technol. Lett. 50, 719 (2008).
[CrossRef]

T. Mandviwala, B. Lail, and G. Boreman, Microw. Opt. Technol. Lett. 50, 1232 (2008).
[CrossRef]

2007 (2)

L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef]

J. Ginn, B. Lail, and G. Boreman, IEEE Trans. Antennas Propag. 55, 2989 (2007).
[CrossRef]

2006 (1)

2005 (1)

T. Mandviwala, B. Lail, and G. Boreman, Microw. Opt. Technol. Lett. 47, 17 (2005).
[CrossRef]

2000 (1)

F. J. Gonzalez, C. Fumeaux, J. Alda, and G. D. Boreman, Microw. Opt. Technol. Lett. 26, 291 (2000).
[CrossRef]

Abeysinghe, D. C.

G. Rui, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Sci. Rep. 3, 2237 (2013).
[CrossRef]

Alda, J.

A. Cuadrado, M. Silva-López, F. J. González, and J. Alda, Opt. Lett. 38, 3784 (2013).
[CrossRef]

A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton.. 7, 073093 (2013).
[CrossRef]

M. Silva-Lopez, A. Cuadrado, N. L. Lombart, and J. Alda, Opt. Express 21, 10867 (2013).
[CrossRef]

A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton. 6, 063512 (2012).
[CrossRef]

F. J. Gonzalez, C. Fumeaux, J. Alda, and G. D. Boreman, Microw. Opt. Technol. Lett. 26, 291 (2000).
[CrossRef]

Balanis, C.

C. Balanis, Antenna Theory, 3rd ed. (Wiley-Interscience, 2005).

Bharadwaj, P.

Boreman, G.

D. Shelton, K. Coffey, and G. Boreman, Opt. Express 18, 1330 (2010).
[CrossRef]

T. Mandviwala, B. Lail, and G. Boreman, Microw. Opt. Technol. Lett. 50, 1232 (2008).
[CrossRef]

C. Middlebrook, P. Krenz, B. Lail, and G. Boreman, Microw. Opt. Technol. Lett. 50, 719 (2008).
[CrossRef]

J. Ginn, B. Lail, and G. Boreman, IEEE Trans. Antennas Propag. 55, 2989 (2007).
[CrossRef]

J. Tharp, J. Lopez-Alonso, J. Ginn, C. Middleton, B. Lail, B. Munk, and G. Boreman, Opt. Lett. 31, 2687 (2006).
[CrossRef]

T. Mandviwala, B. Lail, and G. Boreman, Microw. Opt. Technol. Lett. 47, 17 (2005).
[CrossRef]

Boreman, G. D.

F. J. Gonzalez, C. Fumeaux, J. Alda, and G. D. Boreman, Microw. Opt. Technol. Lett. 26, 291 (2000).
[CrossRef]

Coffey, K.

Cuadrado, A.

M. Silva-Lopez, A. Cuadrado, N. L. Lombart, and J. Alda, Opt. Express 21, 10867 (2013).
[CrossRef]

A. Cuadrado, M. Silva-López, F. J. González, and J. Alda, Opt. Lett. 38, 3784 (2013).
[CrossRef]

A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton.. 7, 073093 (2013).
[CrossRef]

A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton. 6, 063512 (2012).
[CrossRef]

Deutsch, B.

Fumeaux, C.

F. J. Gonzalez, C. Fumeaux, J. Alda, and G. D. Boreman, Microw. Opt. Technol. Lett. 26, 291 (2000).
[CrossRef]

Ginn, J.

Gonzalez, F. J.

A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton.. 7, 073093 (2013).
[CrossRef]

A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton. 6, 063512 (2012).
[CrossRef]

F. J. Gonzalez, C. Fumeaux, J. Alda, and G. D. Boreman, Microw. Opt. Technol. Lett. 26, 291 (2000).
[CrossRef]

González, F. J.

Hansen, R. C.

R. C. Hansen, Phased Array Antennas (Wiley, 1998).

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photonics 4, 312 (2010).
[CrossRef]

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photonics 4, 312 (2010).
[CrossRef]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photonics 4, 312 (2010).
[CrossRef]

Krenz, P.

C. Middlebrook, P. Krenz, B. Lail, and G. Boreman, Microw. Opt. Technol. Lett. 50, 719 (2008).
[CrossRef]

Lail, B.

C. Middlebrook, P. Krenz, B. Lail, and G. Boreman, Microw. Opt. Technol. Lett. 50, 719 (2008).
[CrossRef]

T. Mandviwala, B. Lail, and G. Boreman, Microw. Opt. Technol. Lett. 50, 1232 (2008).
[CrossRef]

J. Ginn, B. Lail, and G. Boreman, IEEE Trans. Antennas Propag. 55, 2989 (2007).
[CrossRef]

J. Tharp, J. Lopez-Alonso, J. Ginn, C. Middleton, B. Lail, B. Munk, and G. Boreman, Opt. Lett. 31, 2687 (2006).
[CrossRef]

T. Mandviwala, B. Lail, and G. Boreman, Microw. Opt. Technol. Lett. 47, 17 (2005).
[CrossRef]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Lombart, N. L.

Lopez-Alonso, J.

Ly-Gagnon, D.-S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Mandviwala, T.

T. Mandviwala, B. Lail, and G. Boreman, Microw. Opt. Technol. Lett. 50, 1232 (2008).
[CrossRef]

T. Mandviwala, B. Lail, and G. Boreman, Microw. Opt. Technol. Lett. 47, 17 (2005).
[CrossRef]

Middlebrook, C.

C. Middlebrook, P. Krenz, B. Lail, and G. Boreman, Microw. Opt. Technol. Lett. 50, 719 (2008).
[CrossRef]

Middleton, C.

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Munk, B.

Nelson, R. L.

G. Rui, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Sci. Rep. 3, 2237 (2013).
[CrossRef]

Novotny, L.

L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, Adv. Opt. Photon. 1, 438 (2009).
[CrossRef]

L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef]

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Rui, G.

G. Rui, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Sci. Rep. 3, 2237 (2013).
[CrossRef]

Shelton, D.

Silva-Lopez, M.

Silva-López, M.

Sraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Tharp, J.

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

van Hulst, N.

L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).
[CrossRef]

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Zhan, Q.

G. Rui, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Sci. Rep. 3, 2237 (2013).
[CrossRef]

Adv. Opt. Photon. (1)

IEEE Trans. Antennas Propag. (1)

J. Ginn, B. Lail, and G. Boreman, IEEE Trans. Antennas Propag. 55, 2989 (2007).
[CrossRef]

J. Nanophoton. (2)

A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton. 6, 063512 (2012).
[CrossRef]

A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton.. 7, 073093 (2013).
[CrossRef]

Microw. Opt. Technol. Lett. (4)

T. Mandviwala, B. Lail, and G. Boreman, Microw. Opt. Technol. Lett. 47, 17 (2005).
[CrossRef]

C. Middlebrook, P. Krenz, B. Lail, and G. Boreman, Microw. Opt. Technol. Lett. 50, 719 (2008).
[CrossRef]

T. Mandviwala, B. Lail, and G. Boreman, Microw. Opt. Technol. Lett. 50, 1232 (2008).
[CrossRef]

F. J. Gonzalez, C. Fumeaux, J. Alda, and G. D. Boreman, Microw. Opt. Technol. Lett. 26, 291 (2000).
[CrossRef]

Nat. Photonics (3)

T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photonics 4, 312 (2010).
[CrossRef]

L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef]

Sci. Rep. (1)

G. Rui, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Sci. Rep. 3, 2237 (2013).
[CrossRef]

Other (2)

R. C. Hansen, Phased Array Antennas (Wiley, 1998).

C. Balanis, Antenna Theory, 3rd ed. (Wiley-Interscience, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Plot on the left represents the modulus (solid line) and phase (dashed line) of the generated intensity at the feed point of the dipole as a function of temperature. The inset shows the dimensional parameters of a dipole. On the right, we show the coordinate system used for the parallel two-dipole arrangement and the collinear three-dipole arrangement.

Fig. 2.
Fig. 2.

Top, temperature distribution (left) and temperature difference profile (right) for two dipoles separated a distance of 2.65 μm and placed on a Si substrate coated with 200 nm of SiO2. Middle, near field-patterns |E| of a two-dipole arrangement as a function of temperature of dipole #2 (located at the right side of the array); meanwhile, dipole #1 remains at T1=293K. Bottom, angular pattern of the same configuration of dipoles at the given temperature. This angular pattern, proportional to |E|2, is calculated in the XZ plane (H plane) and normalized to the maximum value for each temperature.

Fig. 3.
Fig. 3.

Electric near-field distribution (top) and angular pattern (bottom-left) of an array of three dipoles with temperatures T1=293K, T2=846K, and T3=951K. We have also included the coordinate axis used in this case. Bottom-right, mutual phase difference between dipoles as a function of temperature of the second (T2) and third (T3) element of the array. The dotted line corresponds with the phase difference between elements #1 and #2, and the solid line is for the phase difference between elements #2 and #3. The circles denote the setting of temperatures where the phase differences coincide. The first element is always set at room temperature (T1=293.15 K=20°C).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E=n=1Niηkeikr4πrsin(θ)ei(dnkcos(Γ)+βn(Tn))×Ln/2Ln/2In(Tn,l)eiklcos(θ)dl,

Metrics