Abstract

A method for measuring diffuse reflectivity using cubic cavity based on the variable port fraction method was developed by measuring oxygen P11 line at 762 nm using tunable diode laser absorption spectroscopy. An experimental method to determine the additional path length l0 was presented. We measured the diffuse reflectivity of a cubic cavity with scattering coatings of different thickness. The error of diffuse reflectivity was reduced from 0.004 to 0.0003 when the diffuse reflectivity increased from 0.867(4) to 0.9887(3). A simulation result manifests that the error of diffuse reflectivity has the potential to be further reduced at higher diffuse reflectivity.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. C. Wilson and S. L. Jacques, IEEE J. Quantum Electron. 26, 2186 (1990).
    [CrossRef]
  2. A. B. Murphy, Appl. Opt. 46, 3133 (2007).
    [CrossRef]
  3. G. Xu, M. Tazawa, P. Jin, and K. Yoshimura, Appl. Opt. 42, 1352 (2003).
    [CrossRef]
  4. S. D. Noble, A. Boeré, T. Kondratowicz, T. G. Crowe, R. B. Brown, and D. A. Naylor, Can. J. Remote Sens. 34, 68 (2008).
    [CrossRef]
  5. H. Park and C. Kim, Opt. Lett. 37, 611 (2012).
    [CrossRef]
  6. L. Hanssen, Appl. Opt. 40, 3196 (2001).
    [CrossRef]
  7. D. Rönnow and A. Roos, Rev. Sci. Instrum. 66, 2411 (1995).
    [CrossRef]
  8. J. Yu, F. Zheng, Q. Gao, Y. Li, Y. Zhang, Z. Zhang, and S. Wu, Appl. Phys. B, doi: 10.1007/s00340-013-5661-5 (posted online Oct.10, 2013).
  9. J. Hodgkinson, D. Masiyano, and R. P. Tatam, Appl. Opt. 48, 5748 (2009).
    [CrossRef]
  10. Labsphere Inc. “A guide to integrating sphere theory and applications,” (1994) http://www.labsphere.com .
  11. E. Hawe, P. Chambers, C. Fitzpatrick, and E. Lewis, Meas. Sci. Technol. 18, 3187 (2007).
    [CrossRef]
  12. Avian Technologies LLC, http://www.aviantechnologies.com/products/coatings/highreflectance.php .
  13. E. S. Fry, J. Musser, G. W. Kattawar, and P. W. Zhai, Appl. Opt. 45, 9053 (2006).
    [CrossRef]

2012 (1)

2009 (1)

2008 (1)

S. D. Noble, A. Boeré, T. Kondratowicz, T. G. Crowe, R. B. Brown, and D. A. Naylor, Can. J. Remote Sens. 34, 68 (2008).
[CrossRef]

2007 (2)

E. Hawe, P. Chambers, C. Fitzpatrick, and E. Lewis, Meas. Sci. Technol. 18, 3187 (2007).
[CrossRef]

A. B. Murphy, Appl. Opt. 46, 3133 (2007).
[CrossRef]

2006 (1)

2003 (1)

2001 (1)

1995 (1)

D. Rönnow and A. Roos, Rev. Sci. Instrum. 66, 2411 (1995).
[CrossRef]

1990 (1)

B. C. Wilson and S. L. Jacques, IEEE J. Quantum Electron. 26, 2186 (1990).
[CrossRef]

Boeré, A.

S. D. Noble, A. Boeré, T. Kondratowicz, T. G. Crowe, R. B. Brown, and D. A. Naylor, Can. J. Remote Sens. 34, 68 (2008).
[CrossRef]

Brown, R. B.

S. D. Noble, A. Boeré, T. Kondratowicz, T. G. Crowe, R. B. Brown, and D. A. Naylor, Can. J. Remote Sens. 34, 68 (2008).
[CrossRef]

Chambers, P.

E. Hawe, P. Chambers, C. Fitzpatrick, and E. Lewis, Meas. Sci. Technol. 18, 3187 (2007).
[CrossRef]

Crowe, T. G.

S. D. Noble, A. Boeré, T. Kondratowicz, T. G. Crowe, R. B. Brown, and D. A. Naylor, Can. J. Remote Sens. 34, 68 (2008).
[CrossRef]

Fitzpatrick, C.

E. Hawe, P. Chambers, C. Fitzpatrick, and E. Lewis, Meas. Sci. Technol. 18, 3187 (2007).
[CrossRef]

Fry, E. S.

Gao, Q.

J. Yu, F. Zheng, Q. Gao, Y. Li, Y. Zhang, Z. Zhang, and S. Wu, Appl. Phys. B, doi: 10.1007/s00340-013-5661-5 (posted online Oct.10, 2013).

Hanssen, L.

Hawe, E.

E. Hawe, P. Chambers, C. Fitzpatrick, and E. Lewis, Meas. Sci. Technol. 18, 3187 (2007).
[CrossRef]

Hodgkinson, J.

Jacques, S. L.

B. C. Wilson and S. L. Jacques, IEEE J. Quantum Electron. 26, 2186 (1990).
[CrossRef]

Jin, P.

Kattawar, G. W.

Kim, C.

Kondratowicz, T.

S. D. Noble, A. Boeré, T. Kondratowicz, T. G. Crowe, R. B. Brown, and D. A. Naylor, Can. J. Remote Sens. 34, 68 (2008).
[CrossRef]

Lewis, E.

E. Hawe, P. Chambers, C. Fitzpatrick, and E. Lewis, Meas. Sci. Technol. 18, 3187 (2007).
[CrossRef]

Li, Y.

J. Yu, F. Zheng, Q. Gao, Y. Li, Y. Zhang, Z. Zhang, and S. Wu, Appl. Phys. B, doi: 10.1007/s00340-013-5661-5 (posted online Oct.10, 2013).

Masiyano, D.

Murphy, A. B.

Musser, J.

Naylor, D. A.

S. D. Noble, A. Boeré, T. Kondratowicz, T. G. Crowe, R. B. Brown, and D. A. Naylor, Can. J. Remote Sens. 34, 68 (2008).
[CrossRef]

Noble, S. D.

S. D. Noble, A. Boeré, T. Kondratowicz, T. G. Crowe, R. B. Brown, and D. A. Naylor, Can. J. Remote Sens. 34, 68 (2008).
[CrossRef]

Park, H.

Rönnow, D.

D. Rönnow and A. Roos, Rev. Sci. Instrum. 66, 2411 (1995).
[CrossRef]

Roos, A.

D. Rönnow and A. Roos, Rev. Sci. Instrum. 66, 2411 (1995).
[CrossRef]

Tatam, R. P.

Tazawa, M.

Wilson, B. C.

B. C. Wilson and S. L. Jacques, IEEE J. Quantum Electron. 26, 2186 (1990).
[CrossRef]

Wu, S.

J. Yu, F. Zheng, Q. Gao, Y. Li, Y. Zhang, Z. Zhang, and S. Wu, Appl. Phys. B, doi: 10.1007/s00340-013-5661-5 (posted online Oct.10, 2013).

Xu, G.

Yoshimura, K.

Yu, J.

J. Yu, F. Zheng, Q. Gao, Y. Li, Y. Zhang, Z. Zhang, and S. Wu, Appl. Phys. B, doi: 10.1007/s00340-013-5661-5 (posted online Oct.10, 2013).

Zhai, P. W.

Zhang, Y.

J. Yu, F. Zheng, Q. Gao, Y. Li, Y. Zhang, Z. Zhang, and S. Wu, Appl. Phys. B, doi: 10.1007/s00340-013-5661-5 (posted online Oct.10, 2013).

Zhang, Z.

J. Yu, F. Zheng, Q. Gao, Y. Li, Y. Zhang, Z. Zhang, and S. Wu, Appl. Phys. B, doi: 10.1007/s00340-013-5661-5 (posted online Oct.10, 2013).

Zheng, F.

J. Yu, F. Zheng, Q. Gao, Y. Li, Y. Zhang, Z. Zhang, and S. Wu, Appl. Phys. B, doi: 10.1007/s00340-013-5661-5 (posted online Oct.10, 2013).

Appl. Opt. (5)

Can. J. Remote Sens. (1)

S. D. Noble, A. Boeré, T. Kondratowicz, T. G. Crowe, R. B. Brown, and D. A. Naylor, Can. J. Remote Sens. 34, 68 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. C. Wilson and S. L. Jacques, IEEE J. Quantum Electron. 26, 2186 (1990).
[CrossRef]

Meas. Sci. Technol. (1)

E. Hawe, P. Chambers, C. Fitzpatrick, and E. Lewis, Meas. Sci. Technol. 18, 3187 (2007).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

D. Rönnow and A. Roos, Rev. Sci. Instrum. 66, 2411 (1995).
[CrossRef]

Other (3)

J. Yu, F. Zheng, Q. Gao, Y. Li, Y. Zhang, Z. Zhang, and S. Wu, Appl. Phys. B, doi: 10.1007/s00340-013-5661-5 (posted online Oct.10, 2013).

Labsphere Inc. “A guide to integrating sphere theory and applications,” (1994) http://www.labsphere.com .

Avian Technologies LLC, http://www.aviantechnologies.com/products/coatings/highreflectance.php .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Brief instruction for preparing a cubic cavity coated or manufactured by the sample. (b) Calibration curve between OP of 21% oxygen absorption signal and optical path lengths in air. The extrapolated EOPL of a 15 cm size cubic cavity coated with 0.024 cm thick scattering inner coating at added port fraction f of zero is shown. The inset shows raw data of direct oxygen absorption signal in a ramp and the corresponding absorbance spectrum.

Fig. 2.
Fig. 2.

Single path average path length Lave variation for five different thick coatings when the launch and delaunch path lengths l0 were set at 0, 5, 10, 12, 14, 15, 16, 20, and 25 cm.

Fig. 3.
Fig. 3.

(a) Experimental and the fitting EOPLs when different added port fraction f was added to the 15 cm size cubic cavity at the coating thickness of 0.008, 0.016, 0.024, 0.040, and 0.064 cm. (b) Residual plot of EOPL for each thickness of the coating.

Fig. 4.
Fig. 4.

Simulation of systematic errors of the diffuse reflectivity ρ and EOPL Leff with diffuse reflectivity.

Fig. 5.
Fig. 5.

Diffuse reflectivity variation with the thickness of the coating.

Tables (1)

Tables Icon

Table 1. Fitting Parameters of the Diffuse Reflectivity ρ Single Path Optical Path-Length Lave, and Error of ρ at Different Thicknesses of the Coating

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Leff=ρ1ρ(1f0f)Lave.
Leff=l0+ρ1ρ(1f0f)Lave.
ρ=Leffl0Lave+(Leffl0)(1f0f).
Δρρ=[1ρ(1f0f)]·ΔLeffLeff.
ΔLaveLave=ΔLeffLeff.

Metrics