Abstract

We report the demonstration of an OR/NOR directed logic device, which consists of two cascaded micro-ring resonators (MRRs) modulated through electric-field-induced carrier depletion in reverse-biased PN junctions embedded in the ring waveguides. The resonance wavelength mismatch between the two nominally identical MRRs, caused by fabrication error, is compensated by thermal tuning. Two high-speed electrical signals applied to the PN junctions act as the operands, and the logical operation results are represented by the optical powers detected at the two output ports of the device. The working parameters of the device, including the working wavelength, the voltage applied to the micro-heater, and the voltages applied to the two PN junctions are extracted from the static response spectra of the device. Dynamic experimental results show that the OR/NOR logical operations can be achieved at the speed of 10 GHz.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hardy and J. Shamir, Opt. Express 15, 150 (2007).
    [CrossRef]
  2. J. Shamir, Proc. SPIE 8833, 88330J (2013).
    [CrossRef]
  3. H. J. Caulfield and S. Dolev, Nat. Photonics 4, 261 (2010).
    [CrossRef]
  4. H. J. Caulfield, R. A. Soref, and C. S. Vikram, Photon. Nanostr. Fundam. Appl. 5, 14 (2007).
    [CrossRef]
  5. Q. Xu and R. Soref, Opt. Express 19, 5244 (2011).
    [CrossRef]
  6. A. I. Zavalin, H. J. Caulfield, and C. S. Vikram, Optik 121, 1300 (2010).
    [CrossRef]
  7. R. Soref, Adv. Optoelectron. 2011, 627802 (2011).
    [CrossRef]
  8. J. Shamir, Opt. Commun. 291, 133 (2013).
    [CrossRef]
  9. J. Shamir, Appl. Opt. 52, 600 (2013).
    [CrossRef]
  10. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, and X. Zheng, Opt. Express 17, 22484 (2009).
    [CrossRef]
  11. Q. Xu and M. Lipson, Opt. Express 15, 924 (2007).
    [CrossRef]
  12. C. Qiu, X. Ye, R. Soref, L. Yang, and Q. Xu, Opt. Lett. 37, 3942 (2012).
    [CrossRef]
  13. Y. Tian, L. Zhang, R. Ji, L. Yang, P. Zhou, H. Chen, J. Ding, W. Zhu, Y. Lu, and L. Jia, Opt. Lett. 36, 1650 (2011).
    [CrossRef]
  14. Y. Tian, L. Zhang, and L. Yang, Opt. Express 20, 16794 (2012).
    [CrossRef]
  15. L. Zhang, R. Ji, Y. Tian, L. Yang, P. Zhou, Y. Lu, W. Zhu, Y. Liu, L. Jia, and Q. Fang, Opt. Express 19, 6524 (2011).
    [CrossRef]
  16. L. Zhang, R. Ji, L. Jia, L. Yang, P. Zhou, Y. Tian, P. Chen, Y. Lu, Z. Jiang, and Y. Liu, Opt. Lett. 35, 1620 (2010).
    [CrossRef]

2013 (3)

J. Shamir, Proc. SPIE 8833, 88330J (2013).
[CrossRef]

J. Shamir, Opt. Commun. 291, 133 (2013).
[CrossRef]

J. Shamir, Appl. Opt. 52, 600 (2013).
[CrossRef]

2012 (2)

2011 (4)

2010 (3)

A. I. Zavalin, H. J. Caulfield, and C. S. Vikram, Optik 121, 1300 (2010).
[CrossRef]

H. J. Caulfield and S. Dolev, Nat. Photonics 4, 261 (2010).
[CrossRef]

L. Zhang, R. Ji, L. Jia, L. Yang, P. Zhou, Y. Tian, P. Chen, Y. Lu, Z. Jiang, and Y. Liu, Opt. Lett. 35, 1620 (2010).
[CrossRef]

2009 (1)

2007 (3)

Q. Xu and M. Lipson, Opt. Express 15, 924 (2007).
[CrossRef]

H. J. Caulfield, R. A. Soref, and C. S. Vikram, Photon. Nanostr. Fundam. Appl. 5, 14 (2007).
[CrossRef]

J. Hardy and J. Shamir, Opt. Express 15, 150 (2007).
[CrossRef]

Caulfield, H. J.

H. J. Caulfield and S. Dolev, Nat. Photonics 4, 261 (2010).
[CrossRef]

A. I. Zavalin, H. J. Caulfield, and C. S. Vikram, Optik 121, 1300 (2010).
[CrossRef]

H. J. Caulfield, R. A. Soref, and C. S. Vikram, Photon. Nanostr. Fundam. Appl. 5, 14 (2007).
[CrossRef]

Chen, H.

Chen, P.

Ding, J.

Dolev, S.

H. J. Caulfield and S. Dolev, Nat. Photonics 4, 261 (2010).
[CrossRef]

Dong, P.

Fang, Q.

Feng, D.

Hardy, J.

Ji, R.

Jia, L.

Jiang, Z.

Kung, C.-C.

Li, G.

Liang, H.

Liao, S.

Lipson, M.

Liu, Y.

Lu, Y.

Qian, W.

Qiu, C.

Shafiiha, R.

Shamir, J.

Soref, R.

Soref, R. A.

H. J. Caulfield, R. A. Soref, and C. S. Vikram, Photon. Nanostr. Fundam. Appl. 5, 14 (2007).
[CrossRef]

Tian, Y.

Vikram, C. S.

A. I. Zavalin, H. J. Caulfield, and C. S. Vikram, Optik 121, 1300 (2010).
[CrossRef]

H. J. Caulfield, R. A. Soref, and C. S. Vikram, Photon. Nanostr. Fundam. Appl. 5, 14 (2007).
[CrossRef]

Xu, Q.

Yang, L.

Ye, X.

Zavalin, A. I.

A. I. Zavalin, H. J. Caulfield, and C. S. Vikram, Optik 121, 1300 (2010).
[CrossRef]

Zhang, L.

Zheng, D.

Zheng, X.

Zhou, P.

Zhu, W.

Adv. Optoelectron. (1)

R. Soref, Adv. Optoelectron. 2011, 627802 (2011).
[CrossRef]

Appl. Opt. (1)

Nat. Photonics (1)

H. J. Caulfield and S. Dolev, Nat. Photonics 4, 261 (2010).
[CrossRef]

Opt. Commun. (1)

J. Shamir, Opt. Commun. 291, 133 (2013).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Optik (1)

A. I. Zavalin, H. J. Caulfield, and C. S. Vikram, Optik 121, 1300 (2010).
[CrossRef]

Photon. Nanostr. Fundam. Appl. (1)

H. J. Caulfield, R. A. Soref, and C. S. Vikram, Photon. Nanostr. Fundam. Appl. 5, 14 (2007).
[CrossRef]

Proc. SPIE (1)

J. Shamir, Proc. SPIE 8833, 88330J (2013).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic and (b) micrograph of the OR/NOR directed logic device. CML, continuous monochromatic light; EPS, electrical pulse signal; and MRR, micro-ring resonator.

Fig. 2.
Fig. 2.

Spectral responses at the Through and Drop ports of the device without voltage applied to the micro-heater nor voltages applied to the PN junctions.

Fig. 3.
Fig. 3.

Response spectra of the device at the Drop port Z1 with voltage applied to micro-heater above MRR2 being 1.78 V, and with voltages applied to PN diodes of MRR1 and MRR2 being 0 and 0 V (curve a), 4.4 and 0 V (curve b), 0 and 5.2 V (curve c), and 4.4 and 5.2 V (curve d).

Fig. 4.
Fig. 4.

Response spectra of the device at Through port Z2 with voltage applied to micro-heater above MRR2 being 1.81 V, and with voltages applied to PN diodes of MRR1 and MRR2 being 0 and 0 V (curve a), 4.1 and 0 V (curve b), 0 and 6.3 V (curve c), and 4.1 and 6.3 V (curve d).

Fig. 5.
Fig. 5.

Signals applied to (a) MRR1, (b) MRR2, (c) the OR result at the Drop port, and (d) the NOR result at the Through port.

Tables (1)

Tables Icon

Table 1. Truth Table for Structure and Resonance States of MRRs at Working Wavelength λw

Metrics