Abstract

An integrated ytterbium-Raman fiber amplifier architecture is proposed for power scaling of a Raman fiber laser. It is an ytterbium (Yb) fiber amplifier seeded with a double or multiple wavelength laser and followed by a passive Raman fiber. The bluest wavelength light gets amplified in the Yb fiber and the power is transferred to redder wavelengths in the following Raman fiber. A proof of principle experiment demonstrates a 300 W all-fiber linearly polarized single mode amplifier at 1120 nm with an optical efficiency of 70%, limited only by available pump power. The amplifier consists of 4 m of Yb-doped fiber and 20 m of germanium-doped fiber, and seeded with a laser emitting at 1070 and 1120 nm. The power evolution of the 1070 and 1120 nm light inside the amplifier is investigated, both numerically and experimentally. The possibility of power scaling to over kilowatt levels is discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Dianov, J. Lightwave Technol. 20, 1457 (2002).
    [CrossRef]
  2. Y. Feng, L. R. Taylor, and D. B. Calia, Opt. Express 17, 23678 (2009).
    [CrossRef]
  3. M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, Appl. Phys. B 107, 711 (2012).
    [CrossRef]
  4. C. A. Codemard, J. Ji, J. K. Sahu, and J. Nilsson, Proc. SPIE 7580, 75801N (2010).
    [CrossRef]
  5. V. R. Supradeepa and J. W. Nicholson, Opt. Lett. 38, 2538 (2013).
    [CrossRef]
  6. L. Zhang, J. Hu, J. Wang, and Y. Feng, Opt. Lett. 37, 4796 (2012).
    [CrossRef]
  7. J. Wang, J. Hu, L. Zhang, X. Gu, J. Chen, and Y. Feng, Opt. Express 20, 28373 (2012).
    [CrossRef]
  8. H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, IEEE Photon. Technol. Lett. 25, 2093 (2013).
    [CrossRef]
  9. J. Wang, L. Zhang, J. Zhou, L. Si, J. Chen, and Y. Feng, Chin. Opt. Lett. 10, 021406 (2012).
    [CrossRef]
  10. P. Suret and S. Randoux, Opt. Commun. 237, 201 (2004).
    [CrossRef]
  11. D. J. Richardson, J. Nilsson, and W. A. Clarkson, J. Opt. Soc. Am. B 27, B63 (2010).
    [CrossRef]

2013

V. R. Supradeepa and J. W. Nicholson, Opt. Lett. 38, 2538 (2013).
[CrossRef]

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, IEEE Photon. Technol. Lett. 25, 2093 (2013).
[CrossRef]

2012

2010

C. A. Codemard, J. Ji, J. K. Sahu, and J. Nilsson, Proc. SPIE 7580, 75801N (2010).
[CrossRef]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, J. Opt. Soc. Am. B 27, B63 (2010).
[CrossRef]

2009

2004

P. Suret and S. Randoux, Opt. Commun. 237, 201 (2004).
[CrossRef]

2002

Calia, D. B.

Chen, J.

Clarkson, W. A.

Codemard, C. A.

C. A. Codemard, J. Ji, J. K. Sahu, and J. Nilsson, Proc. SPIE 7580, 75801N (2010).
[CrossRef]

Dianov, E. M.

Eberhardt, R.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, Appl. Phys. B 107, 711 (2012).
[CrossRef]

Feng, Y.

Gu, X.

Hu, J.

Ji, J.

C. A. Codemard, J. Ji, J. K. Sahu, and J. Nilsson, Proc. SPIE 7580, 75801N (2010).
[CrossRef]

Nicholson, J. W.

Nilsson, J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, J. Opt. Soc. Am. B 27, B63 (2010).
[CrossRef]

C. A. Codemard, J. Ji, J. K. Sahu, and J. Nilsson, Proc. SPIE 7580, 75801N (2010).
[CrossRef]

Randoux, S.

P. Suret and S. Randoux, Opt. Commun. 237, 201 (2004).
[CrossRef]

Rekas, M.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, Appl. Phys. B 107, 711 (2012).
[CrossRef]

Richardson, D. J.

Sahu, J. K.

C. A. Codemard, J. Ji, J. K. Sahu, and J. Nilsson, Proc. SPIE 7580, 75801N (2010).
[CrossRef]

Schmidt, O.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, Appl. Phys. B 107, 711 (2012).
[CrossRef]

Schreiber, T.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, Appl. Phys. B 107, 711 (2012).
[CrossRef]

Si, L.

Supradeepa, V. R.

Suret, P.

P. Suret and S. Randoux, Opt. Commun. 237, 201 (2004).
[CrossRef]

Taylor, L. R.

Tünnermann, A.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, Appl. Phys. B 107, 711 (2012).
[CrossRef]

Wang, J.

Wang, X.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, IEEE Photon. Technol. Lett. 25, 2093 (2013).
[CrossRef]

Xiao, H.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, IEEE Photon. Technol. Lett. 25, 2093 (2013).
[CrossRef]

Xu, X.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, IEEE Photon. Technol. Lett. 25, 2093 (2013).
[CrossRef]

Zhang, H.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, IEEE Photon. Technol. Lett. 25, 2093 (2013).
[CrossRef]

Zhang, L.

Zhou, J.

Zhou, P.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, IEEE Photon. Technol. Lett. 25, 2093 (2013).
[CrossRef]

Zimer, H.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, Appl. Phys. B 107, 711 (2012).
[CrossRef]

Appl. Phys. B

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, Appl. Phys. B 107, 711 (2012).
[CrossRef]

Chin. Opt. Lett.

IEEE Photon. Technol. Lett.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, IEEE Photon. Technol. Lett. 25, 2093 (2013).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Commun.

P. Suret and S. Randoux, Opt. Commun. 237, 201 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

C. A. Codemard, J. Ji, J. K. Sahu, and J. Nilsson, Proc. SPIE 7580, 75801N (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the laser system.

Fig. 2.
Fig. 2.

Simulated forward and backward output spectra of a YDF amplifier with a 1120 nm only seed and a 1070 and 1120 nm dual-wavelength seed.

Fig. 3.
Fig. 3.

Simulated 976, 1070, and 1120 nm laser power distribution along the fiber within a YRFA with (a) 38 W 1120 nm and 2 W 1070 nm seed and (b) 4 W 1120 nm and 2 W 1070 nm seed.

Fig. 4.
Fig. 4.

Spectra of the dual wavelength seed laser, the YDF part of the amplifier, and the YRFA. Inset is the zoom-in view of laser spectra at 1120 nm at different output powers (from the bottom to the top, the output power increases).

Fig. 5.
Fig. 5.

1070 nm, 1120 nm, and total output power from the YRFA as a function of the pump power. Inset: the output spectrum in a linear scale at the maximum output power.

Fig. 6.
Fig. 6.

1120 nm power ratio as a function of the pump power at different seed powers for the YDF part of the amplifier (1 m GDF fiber is spliced as the delivery fiber).

Fig. 7.
Fig. 7.

1120 nm power ratio as a function of the pump power at different seed powers for the complete YRFA.

Tables (1)

Tables Icon

Table 1. Details of the Amplifier Resultsa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dPpdz=(N2σpeN1σpa)ΓpPpαpPp,dPs71dz=(N2σs71eN1σs71a)ΓsPs71gpPs71Ps121αs71Ps71,dPs121dz=(N2σs121eN1σs121a)ΓsPs121+gsPs71Ps121αs121Ps121,dPsidz=(N2σsieN1σsia)ΓsPsiαsiPsii=1131,exclude71,121,dPsidz=(N2σsieN1σsia)ΓsPsi+αsiPsii=132262.
dPs71dz=gpPs71Ps121αs71Ps71,dPs121dz=gsPs71Ps121αs121Ps121.

Metrics