Abstract

We propose a flexible method to record and reconstruct vector fields with space-variant polarization distribution in c-cut Fe-doped LiNbO3, based on photorefractive two-wave mixing. To our knowledge, this is the first approach for the reconstruction of vector fields without using the photoinduced anisotropy of the recording material.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, Nature 161, 777 (1948).
    [CrossRef]
  2. Y. N. Denisyuk, Sov. Phys. Dokl. 7, 543 (1962).
  3. S. D. Kakichashvili, Opt. Spectrosc. 33, 324 (1972).
  4. S. D. Kakichashvili, Kvant. Elektr. 1, 1435 (1974).
  5. T. Todorov, N. Tomova, and L. Nikolova, Appl. Opt. 23, 4309 (1984).
    [CrossRef]
  6. T. Todorov, N. Tomova, and L. Nikolova, Appl. Opt. 23, 4586 (1984).
  7. T. Todorov, N. Tomova, and L. Nikolova, Appl. Opt. 24, 785 (1985).
    [CrossRef]
  8. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, Appl. Opt. 35, 3835 (1996).
    [CrossRef]
  9. N. C. R. Holme, L. Nikolva, P. S. Ramanujam, and S. Hvilsted, Appl. Phys. Lett. 70, 1518 (1997).
    [CrossRef]
  10. F. L. Labarthet, P. Rochon, and A. Natansohn, Appl. Phys. Lett. 75, 1377 (1999).
    [CrossRef]
  11. H. Ono, H. Wakabayashi, T. Sasaki, A. Emoto, T. Shioda, and N. Kawatsuki, Appl. Phys. Lett. 94, 071114 (2009).
    [CrossRef]
  12. D. Barada, T. Ochiai, T. Fukuda, S. Kawata, and T. Yatagai, Opt. Lett. 37, 4528 (2012).
    [CrossRef]
  13. Y. Okada-Shudo, J. M. Jonathan, and G. Roosen, Opt. Eng. 41, 2803 (2002).
    [CrossRef]
  14. G. Cipparrone, A. Mazzulla, and G. Russo, Appl. Phys. Lett. 78, 1186 (2001).
    [CrossRef]
  15. A. Mazzulla, P. Padliusi, and C. Provenzano, Appl. Phys. Lett. 85, 2505 (2004).
    [CrossRef]
  16. W. Su, C. Chen, and Y. Ouyang, Appl. Opt. 46, 3233 (2007).
    [CrossRef]
  17. X. L. Wang, J. P. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, Opt. Lett. 32, 3549 (2007).
    [CrossRef]
  18. X. L. Wang, Y. N. Li, J. Chen, C. S. Guo, J. P. Ding, and H. T. Wang, Opt. Express 18, 10786 (2010).
    [CrossRef]
  19. H. Chen, J. Hao, B. F. Zhang, J. Xu, J. P. Ding, and H. T. Wang, Opt. Lett. 36, 3179 (2011).
    [CrossRef]

2012

2011

2010

2009

H. Ono, H. Wakabayashi, T. Sasaki, A. Emoto, T. Shioda, and N. Kawatsuki, Appl. Phys. Lett. 94, 071114 (2009).
[CrossRef]

2007

2004

A. Mazzulla, P. Padliusi, and C. Provenzano, Appl. Phys. Lett. 85, 2505 (2004).
[CrossRef]

2002

Y. Okada-Shudo, J. M. Jonathan, and G. Roosen, Opt. Eng. 41, 2803 (2002).
[CrossRef]

2001

G. Cipparrone, A. Mazzulla, and G. Russo, Appl. Phys. Lett. 78, 1186 (2001).
[CrossRef]

1999

F. L. Labarthet, P. Rochon, and A. Natansohn, Appl. Phys. Lett. 75, 1377 (1999).
[CrossRef]

1997

N. C. R. Holme, L. Nikolva, P. S. Ramanujam, and S. Hvilsted, Appl. Phys. Lett. 70, 1518 (1997).
[CrossRef]

1996

1985

1984

T. Todorov, N. Tomova, and L. Nikolova, Appl. Opt. 23, 4309 (1984).
[CrossRef]

T. Todorov, N. Tomova, and L. Nikolova, Appl. Opt. 23, 4586 (1984).

1974

S. D. Kakichashvili, Kvant. Elektr. 1, 1435 (1974).

1972

S. D. Kakichashvili, Opt. Spectrosc. 33, 324 (1972).

1962

Y. N. Denisyuk, Sov. Phys. Dokl. 7, 543 (1962).

1948

D. Gabor, Nature 161, 777 (1948).
[CrossRef]

Andruzzi, F.

Barada, D.

Chen, C.

Chen, H.

Chen, J.

Cipparrone, G.

G. Cipparrone, A. Mazzulla, and G. Russo, Appl. Phys. Lett. 78, 1186 (2001).
[CrossRef]

Denisyuk, Y. N.

Y. N. Denisyuk, Sov. Phys. Dokl. 7, 543 (1962).

Ding, J. P.

Emoto, A.

H. Ono, H. Wakabayashi, T. Sasaki, A. Emoto, T. Shioda, and N. Kawatsuki, Appl. Phys. Lett. 94, 071114 (2009).
[CrossRef]

Fukuda, T.

Gabor, D.

D. Gabor, Nature 161, 777 (1948).
[CrossRef]

Guo, C. S.

Hao, J.

Holme, N. C. R.

N. C. R. Holme, L. Nikolva, P. S. Ramanujam, and S. Hvilsted, Appl. Phys. Lett. 70, 1518 (1997).
[CrossRef]

Hvilsted, S.

N. C. R. Holme, L. Nikolva, P. S. Ramanujam, and S. Hvilsted, Appl. Phys. Lett. 70, 1518 (1997).
[CrossRef]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, Appl. Opt. 35, 3835 (1996).
[CrossRef]

Ivanov, M.

Jonathan, J. M.

Y. Okada-Shudo, J. M. Jonathan, and G. Roosen, Opt. Eng. 41, 2803 (2002).
[CrossRef]

Kakichashvili, S. D.

S. D. Kakichashvili, Kvant. Elektr. 1, 1435 (1974).

S. D. Kakichashvili, Opt. Spectrosc. 33, 324 (1972).

Kawata, S.

Kawatsuki, N.

H. Ono, H. Wakabayashi, T. Sasaki, A. Emoto, T. Shioda, and N. Kawatsuki, Appl. Phys. Lett. 94, 071114 (2009).
[CrossRef]

Labarthet, F. L.

F. L. Labarthet, P. Rochon, and A. Natansohn, Appl. Phys. Lett. 75, 1377 (1999).
[CrossRef]

Li, Y. N.

Mazzulla, A.

A. Mazzulla, P. Padliusi, and C. Provenzano, Appl. Phys. Lett. 85, 2505 (2004).
[CrossRef]

G. Cipparrone, A. Mazzulla, and G. Russo, Appl. Phys. Lett. 78, 1186 (2001).
[CrossRef]

Natansohn, A.

F. L. Labarthet, P. Rochon, and A. Natansohn, Appl. Phys. Lett. 75, 1377 (1999).
[CrossRef]

Ni, W. J.

Nikolova, L.

Nikolva, L.

N. C. R. Holme, L. Nikolva, P. S. Ramanujam, and S. Hvilsted, Appl. Phys. Lett. 70, 1518 (1997).
[CrossRef]

Ochiai, T.

Okada-Shudo, Y.

Y. Okada-Shudo, J. M. Jonathan, and G. Roosen, Opt. Eng. 41, 2803 (2002).
[CrossRef]

Ono, H.

H. Ono, H. Wakabayashi, T. Sasaki, A. Emoto, T. Shioda, and N. Kawatsuki, Appl. Phys. Lett. 94, 071114 (2009).
[CrossRef]

Ouyang, Y.

Padliusi, P.

A. Mazzulla, P. Padliusi, and C. Provenzano, Appl. Phys. Lett. 85, 2505 (2004).
[CrossRef]

Provenzano, C.

A. Mazzulla, P. Padliusi, and C. Provenzano, Appl. Phys. Lett. 85, 2505 (2004).
[CrossRef]

Ramanujam, P. S.

N. C. R. Holme, L. Nikolva, P. S. Ramanujam, and S. Hvilsted, Appl. Phys. Lett. 70, 1518 (1997).
[CrossRef]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, Appl. Opt. 35, 3835 (1996).
[CrossRef]

Rochon, P.

F. L. Labarthet, P. Rochon, and A. Natansohn, Appl. Phys. Lett. 75, 1377 (1999).
[CrossRef]

Roosen, G.

Y. Okada-Shudo, J. M. Jonathan, and G. Roosen, Opt. Eng. 41, 2803 (2002).
[CrossRef]

Russo, G.

G. Cipparrone, A. Mazzulla, and G. Russo, Appl. Phys. Lett. 78, 1186 (2001).
[CrossRef]

Sasaki, T.

H. Ono, H. Wakabayashi, T. Sasaki, A. Emoto, T. Shioda, and N. Kawatsuki, Appl. Phys. Lett. 94, 071114 (2009).
[CrossRef]

Shioda, T.

H. Ono, H. Wakabayashi, T. Sasaki, A. Emoto, T. Shioda, and N. Kawatsuki, Appl. Phys. Lett. 94, 071114 (2009).
[CrossRef]

Su, W.

Todorov, T.

Tomova, N.

Wakabayashi, H.

H. Ono, H. Wakabayashi, T. Sasaki, A. Emoto, T. Shioda, and N. Kawatsuki, Appl. Phys. Lett. 94, 071114 (2009).
[CrossRef]

Wang, H. T.

Wang, X. L.

Xu, J.

Yatagai, T.

Zhang, B. F.

Appl. Opt.

Appl. Phys. Lett.

G. Cipparrone, A. Mazzulla, and G. Russo, Appl. Phys. Lett. 78, 1186 (2001).
[CrossRef]

A. Mazzulla, P. Padliusi, and C. Provenzano, Appl. Phys. Lett. 85, 2505 (2004).
[CrossRef]

N. C. R. Holme, L. Nikolva, P. S. Ramanujam, and S. Hvilsted, Appl. Phys. Lett. 70, 1518 (1997).
[CrossRef]

F. L. Labarthet, P. Rochon, and A. Natansohn, Appl. Phys. Lett. 75, 1377 (1999).
[CrossRef]

H. Ono, H. Wakabayashi, T. Sasaki, A. Emoto, T. Shioda, and N. Kawatsuki, Appl. Phys. Lett. 94, 071114 (2009).
[CrossRef]

Kvant. Elektr.

S. D. Kakichashvili, Kvant. Elektr. 1, 1435 (1974).

Nature

D. Gabor, Nature 161, 777 (1948).
[CrossRef]

Opt. Eng.

Y. Okada-Shudo, J. M. Jonathan, and G. Roosen, Opt. Eng. 41, 2803 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Spectrosc.

S. D. Kakichashvili, Opt. Spectrosc. 33, 324 (1972).

Sov. Phys. Dokl.

Y. N. Denisyuk, Sov. Phys. Dokl. 7, 543 (1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental schematic for recording the vector fields. BS, beam splitter; HWP, half-wave plate; PBS, polarization BS; L, lens; M, high reflection mirror; VFGS, vector field generation system.

Fig. 2.
Fig. 2.

(a) Intensity and polarization distributions of the generated radially polarized field as an object vector field. (b), (c), (d), and (e) Intensity distributions of the object vector field (a) behind an analyzer with polarization angles of 0°, 45°, 90°, and 135°, respectively. (f) Intensity and polarization distributions of the reconstructed radially polarized field by a linearly polarized reading field with a polarization angle of 40°. (g), (h), (i), and (j) Intensity distributions of (f) behind an analyzer with polarization angles of 0°, 45°, 90°, and 135°, respectively. (k) Intensity and polarization distributions of the reconstructed vector field by another linearly polarized reading field with a polarization angle of 136°. (l), (m), (n), and (o) Intensity distributions of (k) behind an analyzer with polarization angles of 0°, 45°, 90°, and 135°, respectively.

Fig. 3.
Fig. 3.

(a) Intensity and polarization distributions of a generated hybridly polarized vector field as an object vector field. (b), (c), (d), and (e) Intensity distributions of (a) behind an analyzer with polarization angles of 0°, 45°, 90°, and 135°, respectively. (f), (g), (h), and (i) Measured Stokes parameters (s0,s1,s2,s3) of the object vector field (a), respectively. (j) Intensity and polarization distributions of the reconstructed hybridly polarized vector field. (k), (l), (m), and (n) Intensity distributions of (j) behind an analyzer with polarization angles of 0°, 45°, 90°, and 135°, respectively. (o), (p), (q), and (r) Measured Stokes parameters (s0,s1,s2,s3) of (j), respectively.

Fig. 4.
Fig. 4.

(a) Intensity distribution of a vector field with space-variant distributions in both polarization and phase as the object vector field. (b) and (c) Intensity patterns of the object vector field behind an analyzer with polarization angles of 0° and 45°, respectively. (d) Interference pattern of the object vector field with a circularly polarized field. (e) Intensity distribution of the reconstructed vector field. (f) and (g) Intensity patterns of the reconstructed vector field behind an analyzer with polarization angles of 0° and 45°, respectively. (h) Interference pattern of the reconstructed vector field with a circularly polarized field.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E=A0(cosδe^x+sinδe^y),withδ=mφ+φ0,
E=A0[cos(mφ+φ0)e^x+jsin(mφ+φ0)e^y].

Metrics