Abstract

We present the measurements of the spatiotemporal impulse response of a system creating nondispersing Airy pulses, i.e., ultrabroadband Airy beams whose main lobe size remains constant over propagation. A custom refractive element with a continuous surface profile was used to impose the cubic phase on the input beam. The impulse response of the Airy pulse generator was spatiotemporally characterized by applying a white-light spatial-spectral interferometry setup based on the SEA TADPOLE technique. The results were compared with the theoretical model and previously spatiotemporally characterized Airy pulses generated by a spatial light modulator.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
    [CrossRef]
  2. P. Saari, Opt. Express 16, 10303 (2008).
    [CrossRef]
  3. D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, Phys. Rev. Lett. 105, 253901 (2010).
    [CrossRef]
  4. Y. Kaganovsky and E. Heyman, J. Opt. Soc. Am. A 28, 1243 (2011).
    [CrossRef]
  5. D. M. Cottrell, J. A. Davis, and T. M. Hazard, Opt. Lett. 34, 2634 (2009).
    [CrossRef]
  6. J. Wang, J. Bu, M. Wang, Y. Yang, and X. Yuan, Appl. Opt. 50, 6627 (2011).
    [CrossRef]
  7. B. Yalizay, B. Soylu, and S. Akturk, J. Opt. Soc. Am. A 27, 2344 (2010).
    [CrossRef]
  8. D. G. Papazoglou, S. Suntsov, D. Abdollahpour, and S. Tzortzakis, Phys. Rev. A 81, 061807 (2010).
    [CrossRef]
  9. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, Science 324, 229 (2009).
    [CrossRef]
  10. A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, Appl. Phys. Lett. 101, 071110 (2012).
    [CrossRef]
  11. P. Piksarv, A. Valdmann, H. Valtna-Lukner, R. Matt, and P. Saari, Opt. Lett. 38, 1143 (2013).
    [CrossRef]
  12. P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, Opt. Express 14, 11892 (2006).
    [CrossRef]
  13. P. Piksarv, H. Valtna-Lukner, A. Valdmann, M. Lõhmus, R. Matt, and P. Saari, Opt. Express 20, 17220 (2012).
    [CrossRef]

2013 (1)

2012 (2)

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, Appl. Phys. Lett. 101, 071110 (2012).
[CrossRef]

P. Piksarv, H. Valtna-Lukner, A. Valdmann, M. Lõhmus, R. Matt, and P. Saari, Opt. Express 20, 17220 (2012).
[CrossRef]

2011 (2)

2010 (3)

B. Yalizay, B. Soylu, and S. Akturk, J. Opt. Soc. Am. A 27, 2344 (2010).
[CrossRef]

D. G. Papazoglou, S. Suntsov, D. Abdollahpour, and S. Tzortzakis, Phys. Rev. A 81, 061807 (2010).
[CrossRef]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, Phys. Rev. Lett. 105, 253901 (2010).
[CrossRef]

2009 (2)

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, Science 324, 229 (2009).
[CrossRef]

D. M. Cottrell, J. A. Davis, and T. M. Hazard, Opt. Lett. 34, 2634 (2009).
[CrossRef]

2008 (1)

2007 (1)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

2006 (1)

Abdollahpour, D.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, Phys. Rev. Lett. 105, 253901 (2010).
[CrossRef]

D. G. Papazoglou, S. Suntsov, D. Abdollahpour, and S. Tzortzakis, Phys. Rev. A 81, 061807 (2010).
[CrossRef]

Akturk, S.

Bowlan, P.

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Bu, J.

Christodoulides, D. N.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, Science 324, 229 (2009).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Cottrell, D. M.

Courvoisier, F.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, Appl. Phys. Lett. 101, 071110 (2012).
[CrossRef]

Davis, J. A.

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Dudley, J. M.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, Appl. Phys. Lett. 101, 071110 (2012).
[CrossRef]

Froehly, L.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, Appl. Phys. Lett. 101, 071110 (2012).
[CrossRef]

Furfaro, L.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, Appl. Phys. Lett. 101, 071110 (2012).
[CrossRef]

Gabolde, P.

Hazard, T. M.

Heyman, E.

Jacquot, M.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, Appl. Phys. Lett. 101, 071110 (2012).
[CrossRef]

Kaganovsky, Y.

Kolesik, M.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, Science 324, 229 (2009).
[CrossRef]

Lacourt, P. A.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, Appl. Phys. Lett. 101, 071110 (2012).
[CrossRef]

Lõhmus, M.

Mathis, A.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, Appl. Phys. Lett. 101, 071110 (2012).
[CrossRef]

Matt, R.

McGresham, K.

Moloney, J. V.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, Science 324, 229 (2009).
[CrossRef]

Papazoglou, D. G.

D. G. Papazoglou, S. Suntsov, D. Abdollahpour, and S. Tzortzakis, Phys. Rev. A 81, 061807 (2010).
[CrossRef]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, Phys. Rev. Lett. 105, 253901 (2010).
[CrossRef]

Piksarv, P.

Polynkin, P.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, Science 324, 229 (2009).
[CrossRef]

Saari, P.

Shreenath, A.

Siviloglou, G. A.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, Science 324, 229 (2009).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Soylu, B.

Suntsov, S.

D. G. Papazoglou, S. Suntsov, D. Abdollahpour, and S. Tzortzakis, Phys. Rev. A 81, 061807 (2010).
[CrossRef]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, Phys. Rev. Lett. 105, 253901 (2010).
[CrossRef]

Trebino, R.

Tzortzakis, S.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, Phys. Rev. Lett. 105, 253901 (2010).
[CrossRef]

D. G. Papazoglou, S. Suntsov, D. Abdollahpour, and S. Tzortzakis, Phys. Rev. A 81, 061807 (2010).
[CrossRef]

Valdmann, A.

Valtna-Lukner, H.

Wang, J.

Wang, M.

Yalizay, B.

Yang, Y.

Yuan, X.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, Appl. Phys. Lett. 101, 071110 (2012).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (1)

D. G. Papazoglou, S. Suntsov, D. Abdollahpour, and S. Tzortzakis, Phys. Rev. A 81, 061807 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, Phys. Rev. Lett. 105, 253901 (2010).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Science (1)

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, Science 324, 229 (2009).
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (1036 KB)     
» Media 2: MOV (4011 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Four types of broadband Airy beams in the visible spectral range (simulations). Colors are shown as perceived by a human eye. In certain regions, interference maxima of all wavelength constituents overlap, i.e., the beam is white. For the four types of Airy beams this occurs in: I: beam waist at z=0, II: far field, III: axis x=0, and IV: parabolic trajectory of the main lobe. Plots are compressed 350 times along z axis.

Fig. 2.
Fig. 2.

Experimental setup. The expanded beam from the laser is split into two using a UV fused-silica window BS1. On the measurement arm, a custom-made continuous-phase element A was used to introduce cubic spatial phase. The Fourier transforming lens L2 on the measurement arm and the focusing lens L1 on the reference arm were chosen to be from the same type and with the same focal length. A fused-silica wedge prism pair P was used to fine-tune the dispersion between two arms of the interferometer.

Fig. 3.
Fig. 3.

Measured and simulated spatiotemporal impulse response of Airy pulse generators at two distances. (a) and (d) Measured nondispersing ultrashort Airy pulse generated by the special phase element (snapshots of Media 1). (b) and (e) Simulation of the previous (Media 2). (c) and (f) Measured ultrashort Airy pulse generated by an SLM [11]. Color represents the amplitude of the electric field. The images show projections of the pulses to the corresponding planes.

Fig. 4.
Fig. 4.

Measured (markers) and simulated (lines) main lobe cross-section area of the ultrashort Airy pulse. Rhombuses and dotted line: Airy pulse generated by an SLM and Fourier lens with f=500mm [11]; nondispersing Airy pulse generated by the special phase element and Fourier lens with f=500mm (circles and dashed line); and with f=300mm (squares and solid line).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Ψ(x,z,t)=0dkS(k)Φ(x,z,k)eik(zct),
Φ(x,z,k)=Ai[xx0(z2z0)2+iazz0]×exp[axx0a2z2z02+iφ(x,z,k)],
φ(x,z,k)=x2x0zz0112(zz0)3+a22zz0.
Φ0(ξ,k)=eac02ξ2ei13(c03ξ33a2c0ξia3),

Metrics