Abstract

Spatial and spectral information holds the key for characterizing incoherently illuminated or self-luminous objects, as well as for imaging fluorescence. We propose spectrally resolved incoherent holography using a multifunctional Mach–Zehnder interferometer that can introduce both a radial shear and a variable time delay between the interfering optical fields and permits the measurement of both spatial and temporal coherence functions, from which a 3D spatial and spectral image of the object is reconstructed. We propose and demonstrate the accurate 3D imaging of the object spectra by in situ calibration.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Mertz and N. O. Young, in Proceedings of the ICO Conference on Optical instruments and Techniques, K. J. Habell, ed. (Chapman & Hall, 1962), p. 305.
  2. A. W. Lohmann, J. Opt. Soc. Am. 55, 1555 (1965).
    [CrossRef]
  3. O. Bryngdahl and A. Lohmann, Appl. Opt. 9, 231 (1970).
    [CrossRef]
  4. G. Pedrini, H. Li, A. Faridian, and W. Osten, Opt. Lett. 37, 713 (2012).
    [CrossRef]
  5. J. Rosen and G. Brooker, Opt. Lett. 32, 912 (2007).
    [CrossRef]
  6. R. Kelner and J. Rosen, Opt. Lett. 37, 3723 (2012).
    [CrossRef]
  7. M. K. Kim, Opt. Express 21, 9636 (2013).
    [CrossRef]
  8. C. W. McCutchen, J. Opt. Soc. Am. 56, 727 (1966).
    [CrossRef]
  9. A. S. Marathay, J. Opt. Soc. Am. A 4, 1861 (1987).
    [CrossRef]
  10. J. Rosen and A. Yariv, J. Opt. Soc. Am. A 13, 2091 (1996).
    [CrossRef]
  11. D. L. Marks, R. A. Stack, and D. J. Brady, Appl. Opt. 38, 1332 (1999).
    [CrossRef]
  12. D. N. Naik, T. Ezawa, R. K. Singh, Y. Miyamoto, and M. Takeda, Opt. Express 20, 19658 (2012).
    [CrossRef]
  13. D. N. Naik, G. Pedrini, and W. Osten, Opt. Express 21, 3990 (2013).
    [CrossRef]
  14. J. Strong and G. A. Vanasse, J. Opt. Soc. Am. 49, 844 (1959).
    [CrossRef]
  15. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, 1970), Chap. 10.
  16. J. W. Goodman, Statistical Optics, 1st ed. (Wiley, 1985), Chap. 5.
  17. K. Itoh, T. Inoue, T. Yoshida, and Y. Ichioka, Appl. Opt. 29, 1625 (1990).
    [CrossRef]
  18. D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, Science 284, 2164 (1999).
    [CrossRef]
  19. S. Teeranutranont and K. Yoshimori, Appl. Opt. 52, A388 (2013).
    [CrossRef]

2013 (3)

2012 (3)

2007 (1)

1999 (2)

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, Science 284, 2164 (1999).
[CrossRef]

D. L. Marks, R. A. Stack, and D. J. Brady, Appl. Opt. 38, 1332 (1999).
[CrossRef]

1996 (1)

1990 (1)

1987 (1)

1970 (1)

1966 (1)

1965 (1)

1959 (1)

Born, M.

M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, 1970), Chap. 10.

Brady, D. J.

D. L. Marks, R. A. Stack, and D. J. Brady, Appl. Opt. 38, 1332 (1999).
[CrossRef]

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, Science 284, 2164 (1999).
[CrossRef]

Brady, R. B.

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, Science 284, 2164 (1999).
[CrossRef]

Brooker, G.

Bryngdahl, O.

Ezawa, T.

Faridian, A.

Goodman, J. W.

J. W. Goodman, Statistical Optics, 1st ed. (Wiley, 1985), Chap. 5.

Ichioka, Y.

Inoue, T.

Itoh, K.

Kelner, R.

Kim, M. K.

Li, H.

Lohmann, A.

Lohmann, A. W.

Marathay, A. S.

Marks, D. L.

D. L. Marks, R. A. Stack, and D. J. Brady, Appl. Opt. 38, 1332 (1999).
[CrossRef]

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, Science 284, 2164 (1999).
[CrossRef]

McCutchen, C. W.

Mertz, L.

L. Mertz and N. O. Young, in Proceedings of the ICO Conference on Optical instruments and Techniques, K. J. Habell, ed. (Chapman & Hall, 1962), p. 305.

Miyamoto, Y.

Munson, D. C.

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, Science 284, 2164 (1999).
[CrossRef]

Naik, D. N.

Osten, W.

Pedrini, G.

Rosen, J.

Singh, R. K.

Stack, R. A.

D. L. Marks, R. A. Stack, and D. J. Brady, Appl. Opt. 38, 1332 (1999).
[CrossRef]

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, Science 284, 2164 (1999).
[CrossRef]

Strong, J.

Takeda, M.

Teeranutranont, S.

Vanasse, G. A.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, 1970), Chap. 10.

Yariv, A.

Yoshida, T.

Yoshimori, K.

Young, N. O.

L. Mertz and N. O. Young, in Proceedings of the ICO Conference on Optical instruments and Techniques, K. J. Habell, ed. (Chapman & Hall, 1962), p. 305.

Appl. Opt. (4)

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (2)

Opt. Express (3)

Opt. Lett. (3)

Science (1)

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, Science 284, 2164 (1999).
[CrossRef]

Other (3)

M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, 1970), Chap. 10.

J. W. Goodman, Statistical Optics, 1st ed. (Wiley, 1985), Chap. 5.

L. Mertz and N. O. Young, in Proceedings of the ICO Conference on Optical instruments and Techniques, K. J. Habell, ed. (Chapman & Hall, 1962), p. 305.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Geometry for recording of information from an incoherently illuminated object.

Fig. 2.
Fig. 2.

Experimental setup for recording of a spectrally resolved incoherent-object hologram.

Fig. 3.
Fig. 3.

Introduction of tunable path delay using PZT.

Fig. 4.
Fig. 4.

(a) Recorded interferogram. (b) Intensity modulation of the central peak as a function of shift-steps of PZT and (c) absolute value of its Fourier transform.

Fig. 5.
Fig. 5.

(a) Amplitude, (b) phase of the peak spectra of red LED, and (c) amplitude of the corresponding reconstructed object at z=0. (d)–(f) the counterparts of (a)–(c) for the peak spectra of green LED.

Fig. 6.
Fig. 6.

(a) Residuals of the path delay in meters after a linear fit as a function of the shift-steps of PZT. (b) Total path delay in meters across the CCD after 500 shift-steps of PZT.

Fig. 7.
Fig. 7.

Reconstruction of the LEDs. (a) and (b) Combined image of amplitude and phase of the reconstructed object η˜λ(r,z=0) for λ=625nm and λ=530nm, respectively. Digitally propagated and focused images (c) η˜λ(r,z=+7mm) for λ=625nm and (d) η˜λ(r,z=7mm) for λ=530nm.

Fig. 8.
Fig. 8.

(a) Toy aircraft as polychromatic object. (b) Recorded interferogram. (c) Intensity modulation of the central peak as a function of shift-steps of PZT.

Fig. 9.
Fig. 9.

(a)–(c) Amplitudes and (d)–(f) the corresponding phases of Γλ for the toy aircraft at λ=625, 530, and 450 nm, respectively.

Fig. 10.
Fig. 10.

Reconstruction of the toy aircraft. (a)–(c) Combined image of amplitude and phase of η˜λ(r,z=1mm) for λ=625, 530 and 450 nm, respectively. The point source from He–Ne laser used for calibration is kept masked in (a).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Γ(r^1,z^1,r^2,z^2)=κf2λ2exp[i[kZ(r^2;λ)kZ(r^1;λ)]z]×{η(r,z;λ)exp[i[kZ(r;λ)](z^2z^1)]×exp[i2πλfr·(r^2r^1)]dr}dzdλ,
Γλ(α1r^,αr^)=Γ(α1r^,αr^,ζ^)exp[i2πλζ^]dζ^.
η˜λ(r,z)=(αα1)Γλ(α1r^,αr^)×exp[i[kZ(αr^;λ)kZ(α1r^;λ)]z]×exp[i2πλf(αα1)(r1·r^)]dr^.
Γ(α1r^,αr^,ζ^(υ))=υ˜1υ˜2I˜(r^,υ˜)exp[i2πυ˜·υ]dυ˜,

Metrics