Abstract

An improved design for hollow antiresonant fibers (HAFs) is presented. It consists of adding extra antiresonant glass elements within the air cladding region of an antiresonant hollow-core fiber. We use numerical simulations to compare fiber structures with and without the additional cladding elements in the near- and mid-IR regimes. We show that realizable fiber structures can provide greatly improved performance in terms of leakage and bending losses compared to previously reported antiresonant fibers. At mid-IR wavelengths, the adoption of this novel fiber design will lead to HAFs with reduced bending losses. In the near-IR, this design could lead to the fabrication of HAFs with very low attenuation.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bending-induced mode non-degeneracy and coupling in chalcogenide negative curvature fibers

Chengli Wei, Curtis R. Menyuk, and Jonathan Hu
Opt. Express 24(11) 12228-12239 (2016)

Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes

Md. Selim Habib, Ole Bang, and Morten Bache
Opt. Express 23(13) 17394-17406 (2015)

Negative curvature fibers

Chengli Wei, R. Joseph Weiblen, Curtis R. Menyuk, and Jonathan Hu
Adv. Opt. Photon. 9(3) 504-561 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription