Abstract

An improved design for hollow antiresonant fibers (HAFs) is presented. It consists of adding extra antiresonant glass elements within the air cladding region of an antiresonant hollow-core fiber. We use numerical simulations to compare fiber structures with and without the additional cladding elements in the near- and mid-IR regimes. We show that realizable fiber structures can provide greatly improved performance in terms of leakage and bending losses compared to previously reported antiresonant fibers. At mid-IR wavelengths, the adoption of this novel fiber design will lead to HAFs with reduced bending losses. In the near-IR, this design could lead to the fabrication of HAFs with very low attenuation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Marcatili and R. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
    [CrossRef]
  2. P. Yeh, A. Yariv, and E. Marom, J. Opt. Soc. Am. 68, 1196 (1978).
    [CrossRef]
  3. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
    [CrossRef]
  4. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
    [CrossRef]
  5. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, and P. St. J. Russell, Science 285, 1537 (1999).
    [CrossRef]
  6. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Express 13, 236 (2005).
    [CrossRef]
  7. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
    [CrossRef]
  8. F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, J. Eur. Opt. Soc. 4, 09004 (2009).
    [CrossRef]
  9. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
    [CrossRef]
  10. J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
    [CrossRef]
  11. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russell, Opt. Express 15, 12680 (2007).
    [CrossRef]
  12. S. Février, B. Beaudou, and P. Viale, Opt. Express 18, 5142 (2010).
    [CrossRef]
  13. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, Opt. Lett. 36, 669 (2011).
    [CrossRef]
  14. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, Opt. Express 19, 1441 (2011).
    [CrossRef]
  15. F. Yu, W. J. Wadsworth, and J. C. Knight, Opt. Express 20, 11153 (2012).
    [CrossRef]
  16. W. Belardi and J. C. Knight, Opt. Express 21, 21912 (2013).
    [CrossRef]
  17. G. Calingaert, S. Heron, and R. Stair, SAE J. 39, 448 (1936).
  18. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, J. Non-Cryst. Solids 203, 19 (1996).
    [CrossRef]
  19. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Express 13, 8277 (2005).
    [CrossRef]
  20. W. A. Gambling, H. Matsumura, and C. M. Ragdale, Opt. Quantum Electron. 11, 43 (1979).
    [CrossRef]

2013 (1)

2012 (1)

2011 (2)

2010 (1)

2009 (1)

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, J. Eur. Opt. Soc. 4, 09004 (2009).
[CrossRef]

2007 (1)

2005 (2)

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[CrossRef]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, and P. St. J. Russell, Science 285, 1537 (1999).
[CrossRef]

1998 (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
[CrossRef]

1996 (2)

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
[CrossRef]

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, J. Non-Cryst. Solids 203, 19 (1996).
[CrossRef]

1993 (1)

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[CrossRef]

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

1979 (1)

W. A. Gambling, H. Matsumura, and C. M. Ragdale, Opt. Quantum Electron. 11, 43 (1979).
[CrossRef]

1978 (1)

1964 (1)

E. Marcatili and R. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
[CrossRef]

1936 (1)

G. Calingaert, S. Heron, and R. Stair, SAE J. 39, 448 (1936).

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[CrossRef]

Archambault, J. L.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[CrossRef]

Atkin, D. M.

Beaudou, B.

Belardi, W.

Benabid, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, Opt. Lett. 36, 669 (2011).
[CrossRef]

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, J. Eur. Opt. Soc. 4, 09004 (2009).
[CrossRef]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[CrossRef]

Biriukov, A. S.

Birks, T. A.

Black, R. J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[CrossRef]

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
[CrossRef]

Bures, J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[CrossRef]

Burger, S.

Calingaert, G.

G. Calingaert, S. Heron, and R. Stair, SAE J. 39, 448 (1936).

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, and P. St. J. Russell, Science 285, 1537 (1999).
[CrossRef]

Dianov, E. M.

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, J. Non-Cryst. Solids 203, 19 (1996).
[CrossRef]

Farr, L.

Février, S.

Gambling, W. A.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, Opt. Quantum Electron. 11, 43 (1979).
[CrossRef]

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, J. Non-Cryst. Solids 203, 19 (1996).
[CrossRef]

Haken, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, J. Non-Cryst. Solids 203, 19 (1996).
[CrossRef]

Heitmann, W.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, J. Non-Cryst. Solids 203, 19 (1996).
[CrossRef]

Heron, S.

G. Calingaert, S. Heron, and R. Stair, SAE J. 39, 448 (1936).

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, J. Non-Cryst. Solids 203, 19 (1996).
[CrossRef]

Knight, J. C.

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Kosolapov, A. F.

Lacroix, S.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[CrossRef]

Light, P. S.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, J. Eur. Opt. Soc. 4, 09004 (2009).
[CrossRef]

Mangan, B. J.

Marcatili, E.

E. Marcatili and R. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
[CrossRef]

Marom, E.

Mason, M. W.

Matsumura, H.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, Opt. Quantum Electron. 11, 43 (1979).
[CrossRef]

Pearce, G. J.

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Plotnichenko, V. G.

Poulton, C. G.

Pryamikov, A. D.

Ragdale, C. M.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, Opt. Quantum Electron. 11, 43 (1979).
[CrossRef]

Roberts, P. J.

Russell, P. St. J.

Sabert, H.

Schmeltzer, R.

E. Marcatili and R. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
[CrossRef]

Semjonov, S. L.

Stair, R.

G. Calingaert, S. Heron, and R. Stair, SAE J. 39, 448 (1936).

Tomlinson, A.

Viale, P.

Wadsworth, W. J.

Wang, Y. Y.

Wheeler, N. V.

Wiederhecker, G. S.

Williams, D. P.

Yariv, A.

Yeh, P.

Yu, F.

Appl. Phys. Lett. (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Bell Syst. Tech. J. (1)

E. Marcatili and R. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
[CrossRef]

J. Eur. Opt. Soc. (1)

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, J. Eur. Opt. Soc. 4, 09004 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[CrossRef]

J. Non-Cryst. Solids (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, J. Non-Cryst. Solids 203, 19 (1996).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (7)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

W. A. Gambling, H. Matsumura, and C. M. Ragdale, Opt. Quantum Electron. 11, 43 (1979).
[CrossRef]

SAE J. (1)

G. Calingaert, S. Heron, and R. Stair, SAE J. 39, 448 (1936).

Science (3)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, and P. St. J. Russell, Science 285, 1537 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

HAF represents the current state of the art in hollow-core antiresonant fibers. Attenuation in the HAF is limited by coupling to the voids in the cladding. In the modified structure 1AE, this coupling is suppressed by including additional antiresonant elements within the cladding voids.

Fig. 2.
Fig. 2.

Comparison between different fiber structures: current state-of-the-art hollow antiresonant fiber (HAF, green curve), one additional nested element (1AE, red curve), and two additional nested elements (2AE, blue curve). Note that the solid red and blue curves are coincident. The broken lines represent the leakage losses only while the solid lines include the effects of material attenuation of fused silica.

Fig. 3.
Fig. 3.

Predicted losses of the HAF (green line), 1AE (red line), and 2AE (blue line) structures as a function of the fiber bend radius. The calculation of the leakage losses are represented with broken lines, while the loss calculations including silica attenuation are shown with solid lines. Note that the solid red and blue curves are coincident.

Fig. 4.
Fig. 4.

Leakage loss between 0.95 and 1.4 μm for scaled HAF (green dashed line), 1AE (red dashed–dotted line), and 2AE (blue dotted line) structures. In this case the geometrical parameters for these three fiber structures have been modified to t=t/3, d=d/3, and Rc=Rc/3.

Fig. 5.
Fig. 5.

Bending losses of the scaled HAF (green dashed line), 1AE (red dashed–dotted line), and 2AE (blue dotted line) structures. In this case the geometrical parameters for these three fiber structures have been modified to t=t/3, d=d/3, and Rc=Rc/3.

Fig. 6.
Fig. 6.

Design tolerances for a 1AE structure at 3.05 μm (t=2.66μm, d=58.27μm, Rc=47μm). The leakage losses have been plotted (a) as a function of the internal cladding hole diameter d1 and (b) as a function of the additional element thickness t1.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t1opt=(2k+1)λ4n21k=0,1,2,,

Metrics