Abstract

Silica microresonators with an inverted-wedge shape were fabricated using conventional semiconductor fabrication methods. The measured quality factors of the resonators were greater than 106 in 1550 nm band. Controllable coupling from undercoupling to the overcoupling regime through the critical coupling point was demonstrated by horizontally moving a fiber taper while in touch with the top surface of the resonator. The thin outer ring of the resonator provided a support for the fiber taper leading to robust stable coupling.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
    [CrossRef]
  2. K. J. Vahala, Nature 424, 839 (2003).
    [CrossRef]
  3. V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).
    [CrossRef]
  4. L. He, S. K. Ozdemir, and L. Yang, Laser Photon. Rev. 7, 60 (2013).
    [CrossRef]
  5. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
    [CrossRef]
  6. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
    [CrossRef]
  7. L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, Nat. Nanotechnol. 6, 428 (2011).
    [CrossRef]
  8. W. Kim, S. K. Ozdemir, J. Zhu, L. He, and L. Yang, Appl. Phys. Lett. 97, 071111 (2010).
    [CrossRef]
  9. V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, Nano Lett. 13, 3347 (2013).
    [CrossRef]
  10. T. J. Kippenberg and K. J. Vahala, Science 321, 1172 (2008).
    [CrossRef]
  11. Y.-F. Xiao, S. K. Ozdemir, V. Gaddam, C.-H. Dong, N. Imoto, and L. Yang, Opt. Express 16, 21462 (2008).
    [CrossRef]
  12. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
    [CrossRef]
  13. M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, Phys. Rev. Lett. 109, 233906 (2012).
    [CrossRef]
  14. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
    [CrossRef]
  15. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).
    [CrossRef]
  16. M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
    [CrossRef]
  17. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, Phys. Rev. Lett. 103, 103601 (2009).
    [CrossRef]
  18. F. Monifi, J. Friedlein, S. K. Ozdemir, and Y. Lan, J. Lightwave Technol. 30, 3306 (2012).
    [CrossRef]
  19. T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, Appl. Phys. Lett. 101, 121101 (2012).
    [CrossRef]
  20. T. Chen, H. Lee, and K. J. Vahala, Appl. Phys. Lett. 102, 031113 (2013).
    [CrossRef]
  21. F. Monifi, S. K. Odemir, J. Friedlein, and Y. Lan, IEEE Photon. Technol. Lett. 25, 1458 (2013).
    [CrossRef]
  22. Y. Yan, C. Zou, S. Yan, F. Sun, J. Liu, C. Xue, Y. Zhang, L. Wang, W. Zhang, and J. Xiong, IEEE Photon. Technol. Lett. 23, 1736 (2011).
    [CrossRef]

2013 (4)

L. He, S. K. Ozdemir, and L. Yang, Laser Photon. Rev. 7, 60 (2013).
[CrossRef]

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, Nano Lett. 13, 3347 (2013).
[CrossRef]

T. Chen, H. Lee, and K. J. Vahala, Appl. Phys. Lett. 102, 031113 (2013).
[CrossRef]

F. Monifi, S. K. Odemir, J. Friedlein, and Y. Lan, IEEE Photon. Technol. Lett. 25, 1458 (2013).
[CrossRef]

2012 (4)

F. Monifi, J. Friedlein, S. K. Ozdemir, and Y. Lan, J. Lightwave Technol. 30, 3306 (2012).
[CrossRef]

T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, Appl. Phys. Lett. 101, 121101 (2012).
[CrossRef]

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, Phys. Rev. Lett. 109, 233906 (2012).
[CrossRef]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[CrossRef]

2011 (3)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).
[CrossRef]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, Nat. Nanotechnol. 6, 428 (2011).
[CrossRef]

Y. Yan, C. Zou, S. Yan, F. Sun, J. Liu, C. Xue, Y. Zhang, L. Wang, W. Zhang, and J. Xiong, IEEE Photon. Technol. Lett. 23, 1736 (2011).
[CrossRef]

2010 (2)

W. Kim, S. K. Ozdemir, J. Zhu, L. He, and L. Yang, Appl. Phys. Lett. 97, 071111 (2010).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
[CrossRef]

2009 (1)

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef]

2008 (2)

2006 (3)

V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).
[CrossRef]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[CrossRef]

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
[CrossRef]

2003 (2)

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef]

Aoki, T.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[CrossRef]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

Arnold, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, Nano Lett. 13, 3347 (2013).
[CrossRef]

Barbre, C.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, Nano Lett. 13, 3347 (2013).
[CrossRef]

Barnard, A.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, Phys. Rev. Lett. 109, 233906 (2012).
[CrossRef]

Bowen, W. P.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[CrossRef]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef]

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
[CrossRef]

Chen, T.

T. Chen, H. Lee, and K. J. Vahala, Appl. Phys. Lett. 102, 031113 (2013).
[CrossRef]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[CrossRef]

Dantham, V. R.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, Nano Lett. 13, 3347 (2013).
[CrossRef]

Dayan, B.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[CrossRef]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).
[CrossRef]

Dong, C.-H.

Friedlein, J.

F. Monifi, S. K. Odemir, J. Friedlein, and Y. Lan, IEEE Photon. Technol. Lett. 25, 1458 (2013).
[CrossRef]

F. Monifi, J. Friedlein, S. K. Ozdemir, and Y. Lan, J. Lightwave Technol. 30, 3306 (2012).
[CrossRef]

Gaddam, V.

He, L.

L. He, S. K. Ozdemir, and L. Yang, Laser Photon. Rev. 7, 60 (2013).
[CrossRef]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, Nat. Nanotechnol. 6, 428 (2011).
[CrossRef]

W. Kim, S. K. Ozdemir, J. Zhu, L. He, and L. Yang, Appl. Phys. Lett. 97, 071111 (2010).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
[CrossRef]

Holler, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, Nano Lett. 13, 3347 (2013).
[CrossRef]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).
[CrossRef]

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).
[CrossRef]

Imoto, N.

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[CrossRef]

Jiang, X.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef]

Kato, T.

T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, Appl. Phys. Lett. 101, 121101 (2012).
[CrossRef]

Keng, D.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, Nano Lett. 13, 3347 (2013).
[CrossRef]

Kim, W.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, Nat. Nanotechnol. 6, 428 (2011).
[CrossRef]

W. Kim, S. K. Ozdemir, J. Zhu, L. He, and L. Yang, Appl. Phys. Lett. 97, 071111 (2010).
[CrossRef]

Kimble, H. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).
[CrossRef]

T. J. Kippenberg and K. J. Vahala, Science 321, 1172 (2008).
[CrossRef]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

Kolchenko, V.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, Nano Lett. 13, 3347 (2013).
[CrossRef]

Lan, Y.

F. Monifi, S. K. Odemir, J. Friedlein, and Y. Lan, IEEE Photon. Technol. Lett. 25, 1458 (2013).
[CrossRef]

F. Monifi, J. Friedlein, S. K. Ozdemir, and Y. Lan, J. Lightwave Technol. 30, 3306 (2012).
[CrossRef]

Lee, H.

T. Chen, H. Lee, and K. J. Vahala, Appl. Phys. Lett. 102, 031113 (2013).
[CrossRef]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[CrossRef]

Li, J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[CrossRef]

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
[CrossRef]

Lin, Q.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef]

Lipson, M.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, Phys. Rev. Lett. 109, 233906 (2012).
[CrossRef]

Liu, J.

Y. Yan, C. Zou, S. Yan, F. Sun, J. Liu, C. Xue, Y. Zhang, L. Wang, W. Zhang, and J. Xiong, IEEE Photon. Technol. Lett. 23, 1736 (2011).
[CrossRef]

Manipatruni, S.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, Phys. Rev. Lett. 109, 233906 (2012).
[CrossRef]

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).
[CrossRef]

McEuen, P.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, Phys. Rev. Lett. 109, 233906 (2012).
[CrossRef]

Monifi, F.

F. Monifi, S. K. Odemir, J. Friedlein, and Y. Lan, IEEE Photon. Technol. Lett. 25, 1458 (2013).
[CrossRef]

F. Monifi, J. Friedlein, S. K. Ozdemir, and Y. Lan, J. Lightwave Technol. 30, 3306 (2012).
[CrossRef]

Odemir, S. K.

F. Monifi, S. K. Odemir, J. Friedlein, and Y. Lan, IEEE Photon. Technol. Lett. 25, 1458 (2013).
[CrossRef]

Ozdemir, S. K.

L. He, S. K. Ozdemir, and L. Yang, Laser Photon. Rev. 7, 60 (2013).
[CrossRef]

F. Monifi, J. Friedlein, S. K. Ozdemir, and Y. Lan, J. Lightwave Technol. 30, 3306 (2012).
[CrossRef]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, Nat. Nanotechnol. 6, 428 (2011).
[CrossRef]

W. Kim, S. K. Ozdemir, J. Zhu, L. He, and L. Yang, Appl. Phys. Lett. 97, 071111 (2010).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
[CrossRef]

Y.-F. Xiao, S. K. Ozdemir, V. Gaddam, C.-H. Dong, N. Imoto, and L. Yang, Opt. Express 16, 21462 (2008).
[CrossRef]

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[CrossRef]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef]

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef]

Parkins, A. S.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[CrossRef]

Rosenberg, J.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

Sun, F.

Y. Yan, C. Zou, S. Yan, F. Sun, J. Liu, C. Xue, Y. Zhang, L. Wang, W. Zhang, and J. Xiong, IEEE Photon. Technol. Lett. 23, 1736 (2011).
[CrossRef]

Suzuki, R.

T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, Appl. Phys. Lett. 101, 121101 (2012).
[CrossRef]

Tanabe, T.

T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, Appl. Phys. Lett. 101, 121101 (2012).
[CrossRef]

Vahala, K. J.

T. Chen, H. Lee, and K. J. Vahala, Appl. Phys. Lett. 102, 031113 (2013).
[CrossRef]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[CrossRef]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef]

T. J. Kippenberg and K. J. Vahala, Science 321, 1172 (2008).
[CrossRef]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[CrossRef]

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef]

Wang, L.

Y. Yan, C. Zou, S. Yan, F. Sun, J. Liu, C. Xue, Y. Zhang, L. Wang, W. Zhang, and J. Xiong, IEEE Photon. Technol. Lett. 23, 1736 (2011).
[CrossRef]

Wiederhecker, G. S.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, Phys. Rev. Lett. 109, 233906 (2012).
[CrossRef]

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[CrossRef]

Xiao, Y.-F.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
[CrossRef]

Y.-F. Xiao, S. K. Ozdemir, V. Gaddam, C.-H. Dong, N. Imoto, and L. Yang, Opt. Express 16, 21462 (2008).
[CrossRef]

Xiong, J.

Y. Yan, C. Zou, S. Yan, F. Sun, J. Liu, C. Xue, Y. Zhang, L. Wang, W. Zhang, and J. Xiong, IEEE Photon. Technol. Lett. 23, 1736 (2011).
[CrossRef]

Xue, C.

Y. Yan, C. Zou, S. Yan, F. Sun, J. Liu, C. Xue, Y. Zhang, L. Wang, W. Zhang, and J. Xiong, IEEE Photon. Technol. Lett. 23, 1736 (2011).
[CrossRef]

Yan, S.

Y. Yan, C. Zou, S. Yan, F. Sun, J. Liu, C. Xue, Y. Zhang, L. Wang, W. Zhang, and J. Xiong, IEEE Photon. Technol. Lett. 23, 1736 (2011).
[CrossRef]

Yan, Y.

Y. Yan, C. Zou, S. Yan, F. Sun, J. Liu, C. Xue, Y. Zhang, L. Wang, W. Zhang, and J. Xiong, IEEE Photon. Technol. Lett. 23, 1736 (2011).
[CrossRef]

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[CrossRef]

Yang, L.

L. He, S. K. Ozdemir, and L. Yang, Laser Photon. Rev. 7, 60 (2013).
[CrossRef]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, Nat. Nanotechnol. 6, 428 (2011).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
[CrossRef]

W. Kim, S. K. Ozdemir, J. Zhu, L. He, and L. Yang, Appl. Phys. Lett. 97, 071111 (2010).
[CrossRef]

Y.-F. Xiao, S. K. Ozdemir, V. Gaddam, C.-H. Dong, N. Imoto, and L. Yang, Opt. Express 16, 21462 (2008).
[CrossRef]

Yoshiki, W.

T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, Appl. Phys. Lett. 101, 121101 (2012).
[CrossRef]

Zhang, M.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, Phys. Rev. Lett. 109, 233906 (2012).
[CrossRef]

Zhang, W.

Y. Yan, C. Zou, S. Yan, F. Sun, J. Liu, C. Xue, Y. Zhang, L. Wang, W. Zhang, and J. Xiong, IEEE Photon. Technol. Lett. 23, 1736 (2011).
[CrossRef]

Zhang, Y.

Y. Yan, C. Zou, S. Yan, F. Sun, J. Liu, C. Xue, Y. Zhang, L. Wang, W. Zhang, and J. Xiong, IEEE Photon. Technol. Lett. 23, 1736 (2011).
[CrossRef]

Zhu, J.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, Nat. Nanotechnol. 6, 428 (2011).
[CrossRef]

W. Kim, S. K. Ozdemir, J. Zhu, L. He, and L. Yang, Appl. Phys. Lett. 97, 071111 (2010).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
[CrossRef]

Zou, C.

Y. Yan, C. Zou, S. Yan, F. Sun, J. Liu, C. Xue, Y. Zhang, L. Wang, W. Zhang, and J. Xiong, IEEE Photon. Technol. Lett. 23, 1736 (2011).
[CrossRef]

Appl. Phys. Lett. (3)

W. Kim, S. K. Ozdemir, J. Zhu, L. He, and L. Yang, Appl. Phys. Lett. 97, 071111 (2010).
[CrossRef]

T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, Appl. Phys. Lett. 101, 121101 (2012).
[CrossRef]

T. Chen, H. Lee, and K. J. Vahala, Appl. Phys. Lett. 102, 031113 (2013).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

F. Monifi, S. K. Odemir, J. Friedlein, and Y. Lan, IEEE Photon. Technol. Lett. 25, 1458 (2013).
[CrossRef]

Y. Yan, C. Zou, S. Yan, F. Sun, J. Liu, C. Xue, Y. Zhang, L. Wang, W. Zhang, and J. Xiong, IEEE Photon. Technol. Lett. 23, 1736 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Laser Photon. Rev. (1)

L. He, S. K. Ozdemir, and L. Yang, Laser Photon. Rev. 7, 60 (2013).
[CrossRef]

Nano Lett. (1)

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, Nano Lett. 13, 3347 (2013).
[CrossRef]

Nat. Nanotechnol. (1)

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, Nat. Nanotechnol. 6, 428 (2011).
[CrossRef]

Nat. Photonics (2)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
[CrossRef]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[CrossRef]

Nature (3)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[CrossRef]

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (3)

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef]

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, Phys. Rev. Lett. 109, 233906 (2012).
[CrossRef]

Science (2)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).
[CrossRef]

T. J. Kippenberg and K. J. Vahala, Science 321, 1172 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Fabrication of wedge- (solid box) and inverted-wedge- (dashed box) shaped silica resonators. The brown, blue, and gray layers represent photoresist (PR), silica, and silicon, respectively. t1 and t2 are the durations of the first and second rounds of etching with buffered hydrofluoric acid (HF), respectively.

Fig. 2.
Fig. 2.

SEM micrographs of (a)–(c) the inverted-wedge resonators and (d) the wedge resonators. (b) Magnified view of the edge of the inverted-wedge resonator of (a). (e) Optical micrograph of the top view of the resonator shown in (a) and (b). (f)–(h) Results of numerical simulations showing the field distribution of the TE1,392 mode in the resonators of 140 μm diameter with edge shapes presented in (b)–(d), respectively. The mode shown in (f) corresponds to the mode studied in Fig. 4. The white arrow indicates the critical coupling point.

Fig. 3.
Fig. 3.

(a) Setup used in the experiments and (b) measured Q of resonators with different t2. The position of the fiber taper was scanned horizontally or vertically (parallel to the x or the y axis). The measured Q for wedge resonators with t2=0 and inverted-wedge resonators with and without an outer ring are indicated by upright triangles, diamonds, and inverted triangles, respectively.

Fig. 4.
Fig. 4.

Theoretical (red line) and measured normalized on-resonance transmission T (black asterisk) as a function of the linewidth δν of the WGM for different horizontal positions x of the tapered fiber with respect to the center of the resonator. Insets (a)–(c) show the typical T spectra (black curves) obtained in under-, critical-, and over-coupling regimes and their corresponding Lorentzian fitting curves (red curves), respectively. Inset (d) demonstrates the dependence of T and δν on x.

Fig. 5.
Fig. 5.

(a) Output spectra indicating the mechanical stability of the taper–resonator system. (b) The measured normalized transmission as a function of time. Black and red curves are when the taper is in contact and out of contact with the top surface of the inverted-wedge-shaped resonator, respectively.

Metrics