Abstract

We present a high precision and fast speed demodulation method for a polarized low-coherence interferometer with location-dependent birefringence dispersion. Based on the characteristics of location-dependent birefringence dispersion and five-step phase-shifting technology, the method accurately retrieves the peak position of zero-fringe at the central wavelength, which avoids the fringe order ambiguity. The method processes data only in the spatial domain and reduces the computational load greatly. We successfully demonstrated the effectiveness of the proposed method in an optical fiber Fabry–Perot barometric pressure sensing experiment system. Measurement precision of 0.091 kPa was realized in the pressure range of 160 kPa, and computation time was improved by 10 times compared to the traditional phase-based method that requires Fourier transform operation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ishii and R. Onodera, Opt. Lett. 16, 1523 (1991).
    [CrossRef]
  2. D. Sacchet, M. Brzezinski, J. Moreau, P. Georges, and A. Dubois, Appl. Opt. 49, 1480 (2010).
    [CrossRef]
  3. J. Jiang, S. Wang, T. Liu, K. Liu, J. Yin, X. Meng, Y. Zhang, S. Wang, Z. Qin, F. Wu, and D. Li, Opt. Express 20, 18117 (2012).
    [CrossRef]
  4. S. Kim, S. Lee, J. Lim, and K. Kim, Appl. Opt. 49, 910 (2010).
    [CrossRef]
  5. A. Harasaki, J. Schmit, and J. Wyant, Appl. Opt. 39, 2107 (2000).
    [CrossRef]
  6. K. Larkin, J. Opt. Soc. Am. A 13, 832 (1996).
    [CrossRef]
  7. P. Sandoz, R. Devillers, and A. Plata, J. Mod. Opt. 44, 519 (1997).
    [CrossRef]
  8. S. Wang, T. Liu, J. Jiang, K. Liu, J. Yin, and F. Wu, Opt. Lett. 38, 3169 (2013).
    [CrossRef]
  9. P. de Groot, X. de Lega, J. Kramer, and M. Turzhitsky, Appl. Opt. 41, 4571 (2002).
    [CrossRef]
  10. R. Dändliker, E. Zimmermann, and G. Frosio, Opt. Lett. 17, 679 (1992).
    [CrossRef]
  11. A. Duncanson and R. Stevenson, Proc. Phys. Soc. London 72, 1001 (1958).
    [CrossRef]
  12. S. Chen, A. Palmer, K. Grattan, and B. Meggitt, Appl. Opt. 31, 6003 (1992).
    [CrossRef]
  13. P. Hariharan, B. Oreb, and T. Eiju, Appl. Opt. 26, 2504 (1987).
    [CrossRef]

2013 (1)

2012 (1)

2010 (2)

2002 (1)

2000 (1)

1997 (1)

P. Sandoz, R. Devillers, and A. Plata, J. Mod. Opt. 44, 519 (1997).
[CrossRef]

1996 (1)

1992 (2)

1991 (1)

1987 (1)

1958 (1)

A. Duncanson and R. Stevenson, Proc. Phys. Soc. London 72, 1001 (1958).
[CrossRef]

Brzezinski, M.

Chen, S.

Dändliker, R.

de Groot, P.

de Lega, X.

Devillers, R.

P. Sandoz, R. Devillers, and A. Plata, J. Mod. Opt. 44, 519 (1997).
[CrossRef]

Dubois, A.

Duncanson, A.

A. Duncanson and R. Stevenson, Proc. Phys. Soc. London 72, 1001 (1958).
[CrossRef]

Eiju, T.

Frosio, G.

Georges, P.

Grattan, K.

Harasaki, A.

Hariharan, P.

Ishii, Y.

Jiang, J.

Kim, K.

Kim, S.

Kramer, J.

Larkin, K.

Lee, S.

Li, D.

Lim, J.

Liu, K.

Liu, T.

Meggitt, B.

Meng, X.

Moreau, J.

Onodera, R.

Oreb, B.

Palmer, A.

Plata, A.

P. Sandoz, R. Devillers, and A. Plata, J. Mod. Opt. 44, 519 (1997).
[CrossRef]

Qin, Z.

Sacchet, D.

Sandoz, P.

P. Sandoz, R. Devillers, and A. Plata, J. Mod. Opt. 44, 519 (1997).
[CrossRef]

Schmit, J.

Stevenson, R.

A. Duncanson and R. Stevenson, Proc. Phys. Soc. London 72, 1001 (1958).
[CrossRef]

Turzhitsky, M.

Wang, S.

Wu, F.

Wyant, J.

Yin, J.

Zhang, Y.

Zimmermann, E.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic layout of the optical fiber F-P barometric pressure sensing system based on polarized low-coherence interference with a birefringence wedge.

Fig. 2.
Fig. 2.

Simulated low-coherence interference showing the computation process based on the characteristics of location-dependent dispersion and the low precise envelop peak position.①–⑤ represent the demodulation process order.

Fig. 3.
Fig. 3.

Phase error of the low-coherence phase-shifting method (a) over the region [s02λ0,s0+2λ0] and (b) on the fringe peaks around the envelop peak for the LCIF with location-dependent dispersion.

Fig. 4.
Fig. 4.

Error between the actual cavity length and the demodulation result under various cavity lengths with sξ in the region [sξmax,sξmax] by the proposed method.

Fig. 5.
Fig. 5.

Computation of sc under 23 kPa pressure. (a) Raw interference signals and the background signals collected by CCD. (2) Computational process of identifying the CF peak position based on the interferogram without background.

Fig. 6.
Fig. 6.

Relationship between the pressure and the detected cavity length. Top, proposed method (an offset of 400 nm was added to make the profiles distinguishable). Middle, combined method of envelope and PSI. Bottom, traditional centroid method (an offset of 400nm was added).

Fig. 7.
Fig. 7.

Measure error (marks with error bars) between the demodulation results by the proposed method and the actual cavity length.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

C(k)=2ln2πΔkexp{[2ln2(kk0)Δk]2},
n(k)=n0+α(kk0),
I(s)=0C(k)cos[k(s2h)]dk=exp[Δk2(s2h)24r]cos[Φ(s)],
I(s)=0C(k)cos{k[s2h+β(kk0)s]}dk=(1+η2)1/4exp{Δk2[(1+βk0)s2h]24r(1+η2)}×cos[Φ(s)],
Φ(s)=Φ(s)+arctanη2ηΔk2[(1+βk0)s2h]24r(1+η2).
scm=(1+βk0)sm[m+ΔΦ(sm)/(2π)]λ0,
ΔΦ(scm)=Φ(sm)Φ(sm)=arctan(βΔk2sm/r)/2.
tan[ϕ(s)]=2[I(sλ0/4)I(s+λ0/4)]2I(s)I(s+λ0/2)I(sλ0/2).
s0=sc+mλ0=sc+ΔΦ(sc)/k0+mλ0,
ΔΦ(sc)=arctan(βΔk2sc/r)2ηs[Δk(1+βk0)(scsm)]24r(1+ηs2).

Metrics