Abstract

In this Letter, polarization division multiplexing is proposed and experimentally demonstrated for the first time that we know of, in visible light communication systems based on incoherent light emitting diodes and two orthogonal groups of linear polarizers. Spectrally efficient 16-ary quadrature amplitude modulation Nyquist single carrier frequency domain equalization is employed to obtain a maximum spectral efficiency. We achieve an aggregate data rate of 1Gb/s, with bit error rate results for two polarization directions both below the 7% pre-forward-error-correction threshold of 3.8×103 after 80 cm free-space transmission. Moreover, the cross talk between x and y polarization is also discussed and analyzed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Biagi, T. Borogovac, and T. D. C. Little, J. Lightwave Technol. 31, 3676 (2013).
    [CrossRef]
  2. Y. Wang, N. Chi, Y. Wang, R. Li, X. Huang, C. Yang, and Z. Zhang, Opt. Express 21, 27558 (2013).
    [CrossRef]
  3. H. Le Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
    [CrossRef]
  4. Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, Opt. Express 21, 1203 (2013).
    [CrossRef]
  5. G. Ntogari, T. Kamalakis, and T. Sphicopoulos, IEEE J. Sel. Areas Commun. 27, 1545 (2009).
    [CrossRef]
  6. E. Baccarelli, M. Biagi, and C. Pelizzoni, IEEE Trans. Signal Process. 53, 2335 (2005).
    [CrossRef]
  7. W. O. Popoola, E. Poves, and H. Haas, IEEE Trans. Commun. 61, 1968 (2013).
    [CrossRef]
  8. B. Schnabel, E. Kley, and F. Wyrowski, Opt. Eng. 38, 220 (1999).
    [CrossRef]
  9. D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, IEEE Commun. Mag. 40(4) 58 (2002).
    [CrossRef]
  10. F. Li, Z. Cao, X. Z. Dong, and L. Chen, J. Lightwave Technol. 31, 2394 (2013).
    [CrossRef]

2013 (5)

2009 (2)

H. Le Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
[CrossRef]

G. Ntogari, T. Kamalakis, and T. Sphicopoulos, IEEE J. Sel. Areas Commun. 27, 1545 (2009).
[CrossRef]

2005 (1)

E. Baccarelli, M. Biagi, and C. Pelizzoni, IEEE Trans. Signal Process. 53, 2335 (2005).
[CrossRef]

2002 (1)

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, IEEE Commun. Mag. 40(4) 58 (2002).
[CrossRef]

1999 (1)

B. Schnabel, E. Kley, and F. Wyrowski, Opt. Eng. 38, 220 (1999).
[CrossRef]

Ariyavisitakul, S. L.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, IEEE Commun. Mag. 40(4) 58 (2002).
[CrossRef]

Baccarelli, E.

E. Baccarelli, M. Biagi, and C. Pelizzoni, IEEE Trans. Signal Process. 53, 2335 (2005).
[CrossRef]

Benyamin-Seeyar, A.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, IEEE Commun. Mag. 40(4) 58 (2002).
[CrossRef]

Biagi, M.

M. Biagi, T. Borogovac, and T. D. C. Little, J. Lightwave Technol. 31, 3676 (2013).
[CrossRef]

E. Baccarelli, M. Biagi, and C. Pelizzoni, IEEE Trans. Signal Process. 53, 2335 (2005).
[CrossRef]

Borogovac, T.

Cao, Z.

Chen, L.

Chi, N.

Dong, X. Z.

Eidson, B.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, IEEE Commun. Mag. 40(4) 58 (2002).
[CrossRef]

Falconer, D.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, IEEE Commun. Mag. 40(4) 58 (2002).
[CrossRef]

Faulkner, G.

H. Le Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
[CrossRef]

Haas, H.

W. O. Popoola, E. Poves, and H. Haas, IEEE Trans. Commun. 61, 1968 (2013).
[CrossRef]

Huang, X.

Jung, D.

H. Le Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
[CrossRef]

Kamalakis, T.

G. Ntogari, T. Kamalakis, and T. Sphicopoulos, IEEE J. Sel. Areas Commun. 27, 1545 (2009).
[CrossRef]

Kley, E.

B. Schnabel, E. Kley, and F. Wyrowski, Opt. Eng. 38, 220 (1999).
[CrossRef]

Le Minh, H.

H. Le Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
[CrossRef]

Lee, K.

H. Le Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
[CrossRef]

Li, F.

Li, R.

Little, T. D. C.

Ntogari, G.

G. Ntogari, T. Kamalakis, and T. Sphicopoulos, IEEE J. Sel. Areas Commun. 27, 1545 (2009).
[CrossRef]

O’Brien, D. C.

H. Le Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
[CrossRef]

Oh, Y.

H. Le Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
[CrossRef]

Pelizzoni, C.

E. Baccarelli, M. Biagi, and C. Pelizzoni, IEEE Trans. Signal Process. 53, 2335 (2005).
[CrossRef]

Popoola, W. O.

W. O. Popoola, E. Poves, and H. Haas, IEEE Trans. Commun. 61, 1968 (2013).
[CrossRef]

Poves, E.

W. O. Popoola, E. Poves, and H. Haas, IEEE Trans. Commun. 61, 1968 (2013).
[CrossRef]

Schnabel, B.

B. Schnabel, E. Kley, and F. Wyrowski, Opt. Eng. 38, 220 (1999).
[CrossRef]

Shang, H.

Sphicopoulos, T.

G. Ntogari, T. Kamalakis, and T. Sphicopoulos, IEEE J. Sel. Areas Commun. 27, 1545 (2009).
[CrossRef]

Wang, Y.

Won, E. T.

H. Le Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
[CrossRef]

Wyrowski, F.

B. Schnabel, E. Kley, and F. Wyrowski, Opt. Eng. 38, 220 (1999).
[CrossRef]

Yang, C.

Yu, J.

Zeng, L.

H. Le Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
[CrossRef]

Zhang, Z.

IEEE Commun. Mag. (1)

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, IEEE Commun. Mag. 40(4) 58 (2002).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

G. Ntogari, T. Kamalakis, and T. Sphicopoulos, IEEE J. Sel. Areas Commun. 27, 1545 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Le Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
[CrossRef]

IEEE Trans. Commun. (1)

W. O. Popoola, E. Poves, and H. Haas, IEEE Trans. Commun. 61, 1968 (2013).
[CrossRef]

IEEE Trans. Signal Process. (1)

E. Baccarelli, M. Biagi, and C. Pelizzoni, IEEE Trans. Signal Process. 53, 2335 (2005).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Eng. (1)

B. Schnabel, E. Kley, and F. Wyrowski, Opt. Eng. 38, 220 (1999).
[CrossRef]

Opt. Express (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Block diagram and experimental setup of the proposed PDM Nyquist SC-FDE VLC system. (AWG, arbitrary waveform generator; P/S, parallel to serial; EA, electrical amplifier; LPF, low-pass filter; OSC, real-time oscilloscope; CP, cyclic prefix.)

Fig. 2.
Fig. 2.

Light illumination versus offset angle between x-polarizer1 and x-polarizer2.

Fig. 3.
Fig. 3.

Photograph of PDM platform (a) transmitters and (b) receivers.

Fig. 4.
Fig. 4.

BER performance versus different bias voltages.

Fig. 5.
Fig. 5.

Measured amplitude of channel matrix at frequency domain of (a) H11, (b) H12, (c) H21, and (d) H22.

Fig. 6.
Fig. 6.

Measured BER performance versus different transmission distances in the case of only one polarization transmission and both polarization transmissions (a) RX1 and (b) RX2.

Fig. 7.
Fig. 7.

Measured electrical spectra of (a) RX1 and (b) RX2 in the case of both polarizations transmission.

Fig. 8.
Fig. 8.

Measured BER performance versus different transmission distance, with and without polarizers.

Fig. 9.
Fig. 9.

Constellations of (a) RX1 and (b) RX2 without using polarizers.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

(Y1Y2)=H(I1I2)+N=12(cos2α11cos2α12cos2α21cos2α22)(I1I2)+N,
cos2α11cos2α22cos2α12cos2α21.
(Y1Y2)=H1(I1I2).
(Y1Y2)=(1/2001/2)(I1I2)+N.

Metrics