Abstract

We demonstrate the modulation of silicon ring resonators at RF carrier frequencies higher than the resonance linewidth by coupling adjacent free-spectral-range (FSR) resonance modes. In this modulator scheme, the modulation frequency is matched to the FSR frequency. As an example, we demonstrate a 20 GHz modulation in a silicon ring with a resonance linewidth of only 11.7 GHz. We show theoretically that this modulator scheme has lower power consumption compared to a standard silicon ring modulator at high carrier frequencies. These results could enable future on-chip high-frequency analog communication and photonic signal processing on a silicon photonics platform.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Gardes, G. Reed, N. Emerson, and C. Png, Opt. Express 13, 8845 (2005).
    [CrossRef]
  2. P. Dong, R. Shaiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, Opt. Express 18, 10941 (2010).
    [CrossRef]
  3. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, Opt. Express 19, 21989 (2011).
    [CrossRef]
  4. I.-L. Gheorma and R. Osgood, IEEE Photon. Technol. Lett. 14, 795 (2002).
    [CrossRef]
  5. J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
    [CrossRef]
  6. D. Cohen, M. Hossein-Zadeh, and A. Levi, Solid-State Electron. 45, 1577 (2001).
    [CrossRef]
  7. P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson, Phys. Rev. Lett. 100, 033904 (2008).
    [CrossRef]
  8. B. A. Daniel, D. N. Maywar, and G. P. Agrawal, J. Opt. Soc. Am. B 28, 2207 (2011).
    [CrossRef]
  9. W. D. Sacher and J. K. Poon, Opt. Express 16, 15741 (2008).
    [CrossRef]
  10. W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, Opt. Express 21, 9722 (2013).
    [CrossRef]
  11. K. Lau, Appl. Phys. Lett. 52, 2214 (1988).
    [CrossRef]
  12. J. B. Georges, M.-H. Kiang, K. Heppell, M. Sayed, and K. Lan, IEEE Photon. Technol. Lett. 6, 568 (1994).
    [CrossRef]
  13. B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, IEEE J. Sel. Top. Quantum Electron. 13, 104 (2007).
    [CrossRef]
  14. Based on our analysis for the FSRC modulator, the RF wavelength is about eight times of the half electrode length (since the electrode is fed at the midpoint of the electrode) at the FSR frequency considered in this work. Therefore, a lumped model is a valid approximation.
  15. H. Yu and W. Bogaerts, J. Lightwave Technol. 30, 1602 (2012).
    [CrossRef]
  16. H. A. Haus and W. Huang, Proc. IEEE 79, 1505 (1991).
    [CrossRef]
  17. D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photon. Technol. Lett. 24, 234 (2012).
    [CrossRef]
  18. J. Cardenas, P. A. Morton, J. B. Khurgin, A. Griffith, C. B. Poitras, K. Preston, and M. Lipson, Opt. Express 21, 22549 (2013).
    [CrossRef]
  19. A. Griffith, J. Cardenas, C. B. Poitras, and M. Lipson, Opt. Express 20, 21341 (2012).
    [CrossRef]

2013 (2)

2012 (3)

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photon. Technol. Lett. 24, 234 (2012).
[CrossRef]

H. Yu and W. Bogaerts, J. Lightwave Technol. 30, 1602 (2012).
[CrossRef]

A. Griffith, J. Cardenas, C. B. Poitras, and M. Lipson, Opt. Express 20, 21341 (2012).
[CrossRef]

2011 (2)

2010 (1)

2008 (2)

W. D. Sacher and J. K. Poon, Opt. Express 16, 15741 (2008).
[CrossRef]

P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson, Phys. Rev. Lett. 100, 033904 (2008).
[CrossRef]

2007 (2)

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, IEEE J. Sel. Top. Quantum Electron. 13, 104 (2007).
[CrossRef]

2005 (1)

2002 (1)

I.-L. Gheorma and R. Osgood, IEEE Photon. Technol. Lett. 14, 795 (2002).
[CrossRef]

2001 (1)

D. Cohen, M. Hossein-Zadeh, and A. Levi, Solid-State Electron. 45, 1577 (2001).
[CrossRef]

1994 (1)

J. B. Georges, M.-H. Kiang, K. Heppell, M. Sayed, and K. Lan, IEEE Photon. Technol. Lett. 6, 568 (1994).
[CrossRef]

1991 (1)

H. A. Haus and W. Huang, Proc. IEEE 79, 1505 (1991).
[CrossRef]

1988 (1)

K. Lau, Appl. Phys. Lett. 52, 2214 (1988).
[CrossRef]

Agrawal, G. P.

Alic, N.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photon. Technol. Lett. 24, 234 (2012).
[CrossRef]

Asghari, M.

Assefa, S.

Barwicz, T.

Bogaerts, W.

Bortnik, B.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, IEEE J. Sel. Top. Quantum Electron. 13, 104 (2007).
[CrossRef]

Capmany, J.

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

Cardenas, J.

Cohen, D.

D. Cohen, M. Hossein-Zadeh, and A. Levi, Solid-State Electron. 45, 1577 (2001).
[CrossRef]

Daniel, B. A.

Dong, P.

Emerson, N.

Fedeli, J.-M.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photon. Technol. Lett. 24, 234 (2012).
[CrossRef]

Feng, D.

Feng, N.-N.

Fetterman, H. R.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, IEEE J. Sel. Top. Quantum Electron. 13, 104 (2007).
[CrossRef]

Gardes, F.

Gardes, F. Y.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photon. Technol. Lett. 24, 234 (2012).
[CrossRef]

Georges, J. B.

J. B. Georges, M.-H. Kiang, K. Heppell, M. Sayed, and K. Lan, IEEE Photon. Technol. Lett. 6, 568 (1994).
[CrossRef]

Gheorma, I.-L.

I.-L. Gheorma and R. Osgood, IEEE Photon. Technol. Lett. 14, 795 (2002).
[CrossRef]

Green, W. M. J.

Griffith, A.

Haus, H. A.

H. A. Haus and W. Huang, Proc. IEEE 79, 1505 (1991).
[CrossRef]

Heppell, K.

J. B. Georges, M.-H. Kiang, K. Heppell, M. Sayed, and K. Lan, IEEE Photon. Technol. Lett. 6, 568 (1994).
[CrossRef]

Hossein-Zadeh, M.

D. Cohen, M. Hossein-Zadeh, and A. Levi, Solid-State Electron. 45, 1577 (2001).
[CrossRef]

Hu, Y.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photon. Technol. Lett. 24, 234 (2012).
[CrossRef]

Huang, W.

H. A. Haus and W. Huang, Proc. IEEE 79, 1505 (1991).
[CrossRef]

Hung, Y.-C.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, IEEE J. Sel. Top. Quantum Electron. 13, 104 (2007).
[CrossRef]

Jen, A. K.-Y.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, IEEE J. Sel. Top. Quantum Electron. 13, 104 (2007).
[CrossRef]

Khurgin, J. B.

Kiang, M.-H.

J. B. Georges, M.-H. Kiang, K. Heppell, M. Sayed, and K. Lan, IEEE Photon. Technol. Lett. 6, 568 (1994).
[CrossRef]

Krishnamoorthy, A. V.

Kuo, B. P. P.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photon. Technol. Lett. 24, 234 (2012).
[CrossRef]

Lan, K.

J. B. Georges, M.-H. Kiang, K. Heppell, M. Sayed, and K. Lan, IEEE Photon. Technol. Lett. 6, 568 (1994).
[CrossRef]

Lau, K.

K. Lau, Appl. Phys. Lett. 52, 2214 (1988).
[CrossRef]

Lentine, A. L.

Levi, A.

D. Cohen, M. Hossein-Zadeh, and A. Levi, Solid-State Electron. 45, 1577 (2001).
[CrossRef]

Li, G.

Liang, H.

Liao, S.

Lipson, M.

Luo, J.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, IEEE J. Sel. Top. Quantum Electron. 13, 104 (2007).
[CrossRef]

Manipatruni, S.

P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson, Phys. Rev. Lett. 100, 033904 (2008).
[CrossRef]

Mashanovich, G. Z.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photon. Technol. Lett. 24, 234 (2012).
[CrossRef]

Maywar, D. N.

Morton, P. A.

Myslivets, E.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photon. Technol. Lett. 24, 234 (2012).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

Osgood, R.

I.-L. Gheorma and R. Osgood, IEEE Photon. Technol. Lett. 14, 795 (2002).
[CrossRef]

Pan, H.

Png, C.

Poitras, C. B.

Poon, J. K.

Poon, J. K. S.

Preble, S. F.

P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson, Phys. Rev. Lett. 100, 033904 (2008).
[CrossRef]

Preston, K.

Radic, S.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photon. Technol. Lett. 24, 234 (2012).
[CrossRef]

Reed, G.

Reed, G. T.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photon. Technol. Lett. 24, 234 (2012).
[CrossRef]

Robinson, J. T.

P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson, Phys. Rev. Lett. 100, 033904 (2008).
[CrossRef]

Sacher, W. D.

Sayed, M.

J. B. Georges, M.-H. Kiang, K. Heppell, M. Sayed, and K. Lan, IEEE Photon. Technol. Lett. 6, 568 (1994).
[CrossRef]

Seo, B.-J.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, IEEE J. Sel. Top. Quantum Electron. 13, 104 (2007).
[CrossRef]

Shaiha, R.

Shank, S. M.

Steier, W. H.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, IEEE J. Sel. Top. Quantum Electron. 13, 104 (2007).
[CrossRef]

Tazawa, H.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, IEEE J. Sel. Top. Quantum Electron. 13, 104 (2007).
[CrossRef]

Thomson, D. J.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photon. Technol. Lett. 24, 234 (2012).
[CrossRef]

Trotter, D. C.

Vlasov, Y. A.

Watts, M. R.

Young, R. W.

Yu, H.

Zheng, X.

Zlatanovic, S.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photon. Technol. Lett. 24, 234 (2012).
[CrossRef]

Zortman, W. A.

Appl. Phys. Lett. (1)

K. Lau, Appl. Phys. Lett. 52, 2214 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, IEEE J. Sel. Top. Quantum Electron. 13, 104 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. B. Georges, M.-H. Kiang, K. Heppell, M. Sayed, and K. Lan, IEEE Photon. Technol. Lett. 6, 568 (1994).
[CrossRef]

I.-L. Gheorma and R. Osgood, IEEE Photon. Technol. Lett. 14, 795 (2002).
[CrossRef]

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photon. Technol. Lett. 24, 234 (2012).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

Opt. Express (7)

Phys. Rev. Lett. (1)

P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson, Phys. Rev. Lett. 100, 033904 (2008).
[CrossRef]

Proc. IEEE (1)

H. A. Haus and W. Huang, Proc. IEEE 79, 1505 (1991).
[CrossRef]

Solid-State Electron. (1)

D. Cohen, M. Hossein-Zadeh, and A. Levi, Solid-State Electron. 45, 1577 (2001).
[CrossRef]

Other (1)

Based on our analysis for the FSRC modulator, the RF wavelength is about eight times of the half electrode length (since the electrode is fed at the midpoint of the electrode) at the FSR frequency considered in this work. Therefore, a lumped model is a valid approximation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Depiction of the optical spectra of the FSRC approach (left) and the standard ring modulator (right) under a sinusoidal modulation with frequency fM. In our FSRC approach, the FSR matches fM, while in the standard ring modulator, FSRfM. (b) Illustration of the FSRC scheme. The ring has a circumference, L, and a segment length, S, subjected to refractive index modulation.

Fig. 2.
Fig. 2.

Calculation of (a) coupling coefficients between two FSR modes with indices m and n normalized to the maximum resonance frequency modulation Δω0,max at S=L). (b) The modulation responses of the FSRC modulators (colored) and of the standard modulators (black and gray) with Q=16,000 and Q=60,000.

Fig. 3.
Fig. 3.

(a) Optical microscope image of the fabricated device. (b) Illustration of the cross section of the modulated region.

Fig. 4.
Fig. 4.

Measured (circles) and theoretical (solid) modulation responses of the FSRC modulator (red) and the standard modulator (black).

Fig. 5.
Fig. 5.

Optical spectra of the devices modulated with pure sinusoids at different frequencies for (a) the FSR-coupling modulator and (b) the standard modulator. The insets in (a) and (b) show the measured (black) and the simulated (red) passive optical transmission (T) spectra of the corresponding ring modulators. Both resonators show a loaded quality factor Q of 16,000.

Fig. 6.
Fig. 6.

Theoretical intrinsic power consumptions for the standard silicon ring modulator (black) and the FSRC modulators (colored) with different Q and S.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

μnm(t)=ωn4δε(z,t)Er,nEr,m*dxdydz12εEr,mEr,m*dxdydz,

Metrics