Abstract

The room-temperature Stark splitting properties of Yb3+ are practical and valuable for lasers because the working temperature of the gain media intensively increases with the laser output. In this Letter, the room-temperature Stark splitting properties of Yb3+ in several popular laser glasses are contrastively studied. Yb3+-doped germanate (Ge), borate (B), silicate (Si), bismuthate (Bi), tellurite (Te), and fluorophosphate (FP) glasses exhibit large Stark splitting and tend to operate close to the quasi-four-level scheme, whereas phosphate (P) glass shows the weakest Stark splitting and tends to operate close to the quasi-three-level one. Due to the low thermal conductivity of the glass matrix, Yb3+-doped P glass suffers from serious thermal problems and is difficult to achieve high laser output. The Stark splitting is also used to estimate the crystal-field strength of glass hosts and local Yb3+ ligand asymmetry degree. The results show that P glass shows weaker crystal-field effect and lower Yb3+ ligand asymmetry than Ge, Si, and B glasses.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Loeser, F. Röser, A. Reichelt, M. Siebold, S. Grimm, D. Litzkendorf, A. Schwuchow, J. Kirchhof, and U. Schramm, Opt. Lett. 37, 4029 (2012).
    [CrossRef]
  2. T. Wei, J. Li, and J. Zhu, Chin. Opt. Lett. 10, 040605 (2012).
    [CrossRef]
  3. A. I. Trikshev, A. S. Kurkov, and V. B. Tsvetkov, Quantum Electron. 42, 417 (2012).
    [CrossRef]
  4. R. Zhu, J. Wang, J. Zhou, J. Liu, and W. Chen, Chin. Opt. Lett. 10, 091402 (2012).
    [CrossRef]
  5. D. J. Richardson, J. Nilsson, and W. A. Clarkson, J. Opt. Soc. Am. B 27, B63 (2010).
    [CrossRef]
  6. M. O’Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, in Conference on Lasers and Electro-Optics (Optical Society of America, 2009).
  7. M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, and J. Hein, Appl. Phys. B 101, 93 (2010).
    [CrossRef]
  8. L. Zhang, L. Hu, and Z. Jiang, Prog. Phys. 23, 473 (2003).
  9. S. Ohara and Y. Kuroiwa, Opt. Express 17, 14104 (2009).
    [CrossRef]
  10. D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, Quantum Electron. 34, 579 (2004).
    [CrossRef]
  11. K. Lu and N. K. Dutta, J. Appl. Phys. 91, 576 (2002).
    [CrossRef]
  12. G. Gao and L. Wondraczek, Opt. Mater. Express 3, 633 (2013).
    [CrossRef]
  13. C. Jiang, H. Liu, Q. Zeng, Y. Wang, J. Zhang, and F. Gan, Proc. SPIE 3942, 312 (2000).
    [CrossRef]
  14. G. Gao and L. Wondraczek, J. Mater. Chem. C 1, 1952 (2013).
    [CrossRef]
  15. S. Dai, A. Sugiyama, L. Hu, Z. Liu, and Z. Jiang, J. Non-Cryst. Solids 311, 138 (2002).
    [CrossRef]
  16. L. Zhang, Y. Leng, J. Zhang, and L. Hu, J. Mater. Sci. Technol. 26, 921 (2010).
    [CrossRef]
  17. X. Zou and H. Toratani, Phys. Rev. B 52, 15889 (1995).
    [CrossRef]
  18. D. Ehrt and T. Topfer, Proc. SPIE 4102, 95 (2000).
    [CrossRef]
  19. P. H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, J. Phys. Condens. Matter 13, 5427 (2001).
    [CrossRef]
  20. F. Auzel and O. L. Malta, J. Phys. 44, 201 (1983).
    [CrossRef]
  21. F. Auzel, J. Lumin. 93, 129 (2001).
    [CrossRef]
  22. C. C. Robinson and J. T. Fournier, J. Phys. Chem. Solids 31, 895 (1970).
    [CrossRef]
  23. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, Opt. Lett. 36, 3708 (2011).
    [CrossRef]

2013 (2)

G. Gao and L. Wondraczek, Opt. Mater. Express 3, 633 (2013).
[CrossRef]

G. Gao and L. Wondraczek, J. Mater. Chem. C 1, 1952 (2013).
[CrossRef]

2012 (4)

2011 (1)

2010 (3)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, J. Opt. Soc. Am. B 27, B63 (2010).
[CrossRef]

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, and J. Hein, Appl. Phys. B 101, 93 (2010).
[CrossRef]

L. Zhang, Y. Leng, J. Zhang, and L. Hu, J. Mater. Sci. Technol. 26, 921 (2010).
[CrossRef]

2009 (1)

2004 (1)

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, Quantum Electron. 34, 579 (2004).
[CrossRef]

2003 (1)

L. Zhang, L. Hu, and Z. Jiang, Prog. Phys. 23, 473 (2003).

2002 (2)

K. Lu and N. K. Dutta, J. Appl. Phys. 91, 576 (2002).
[CrossRef]

S. Dai, A. Sugiyama, L. Hu, Z. Liu, and Z. Jiang, J. Non-Cryst. Solids 311, 138 (2002).
[CrossRef]

2001 (2)

P. H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, J. Phys. Condens. Matter 13, 5427 (2001).
[CrossRef]

F. Auzel, J. Lumin. 93, 129 (2001).
[CrossRef]

2000 (2)

C. Jiang, H. Liu, Q. Zeng, Y. Wang, J. Zhang, and F. Gan, Proc. SPIE 3942, 312 (2000).
[CrossRef]

D. Ehrt and T. Topfer, Proc. SPIE 4102, 95 (2000).
[CrossRef]

1995 (1)

X. Zou and H. Toratani, Phys. Rev. B 52, 15889 (1995).
[CrossRef]

1983 (1)

F. Auzel and O. L. Malta, J. Phys. 44, 201 (1983).
[CrossRef]

1970 (1)

C. C. Robinson and J. T. Fournier, J. Phys. Chem. Solids 31, 895 (1970).
[CrossRef]

Abramov, M.

M. O’Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, in Conference on Lasers and Electro-Optics (Optical Society of America, 2009).

Antic-Fidancev, E.

P. H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, J. Phys. Condens. Matter 13, 5427 (2001).
[CrossRef]

Auzel, F.

F. Auzel, J. Lumin. 93, 129 (2001).
[CrossRef]

F. Auzel and O. L. Malta, J. Phys. 44, 201 (1983).
[CrossRef]

Bödefeld, R.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, and J. Hein, Appl. Phys. B 101, 93 (2010).
[CrossRef]

Chen, D.

Chen, W.

Clarkson, W. A.

Dai, S.

S. Dai, A. Sugiyama, L. Hu, Z. Liu, and Z. Jiang, J. Non-Cryst. Solids 311, 138 (2002).
[CrossRef]

Dianov, E. M.

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, Quantum Electron. 34, 579 (2004).
[CrossRef]

Dutta, N. K.

K. Lu and N. K. Dutta, J. Appl. Phys. 91, 576 (2002).
[CrossRef]

Ehrt, D.

D. Ehrt and T. Topfer, Proc. SPIE 4102, 95 (2000).
[CrossRef]

Ferin, A.

M. O’Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, in Conference on Lasers and Electro-Optics (Optical Society of America, 2009).

Fomin, V.

M. O’Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, in Conference on Lasers and Electro-Optics (Optical Society of America, 2009).

Fournier, J. T.

C. C. Robinson and J. T. Fournier, J. Phys. Chem. Solids 31, 895 (1970).
[CrossRef]

Gan, F.

C. Jiang, H. Liu, Q. Zeng, Y. Wang, J. Zhang, and F. Gan, Proc. SPIE 3942, 312 (2000).
[CrossRef]

Gao, G.

G. Gao and L. Wondraczek, J. Mater. Chem. C 1, 1952 (2013).
[CrossRef]

G. Gao and L. Wondraczek, Opt. Mater. Express 3, 633 (2013).
[CrossRef]

Gapontsev, V.

M. O’Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, in Conference on Lasers and Electro-Optics (Optical Society of America, 2009).

Gaume, R.

P. H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, J. Phys. Condens. Matter 13, 5427 (2001).
[CrossRef]

Grimm, S.

Grukh, D. A.

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, Quantum Electron. 34, 579 (2004).
[CrossRef]

Haumesser, P. H.

P. H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, J. Phys. Condens. Matter 13, 5427 (2001).
[CrossRef]

Hein, J.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, and J. Hein, Appl. Phys. B 101, 93 (2010).
[CrossRef]

Hornung, M.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, and J. Hein, Appl. Phys. B 101, 93 (2010).
[CrossRef]

Hu, L.

L. Zhang, Y. Leng, J. Zhang, and L. Hu, J. Mater. Sci. Technol. 26, 921 (2010).
[CrossRef]

L. Zhang, L. Hu, and Z. Jiang, Prog. Phys. 23, 473 (2003).

S. Dai, A. Sugiyama, L. Hu, Z. Liu, and Z. Jiang, J. Non-Cryst. Solids 311, 138 (2002).
[CrossRef]

Jiang, C.

C. Jiang, H. Liu, Q. Zeng, Y. Wang, J. Zhang, and F. Gan, Proc. SPIE 3942, 312 (2000).
[CrossRef]

Jiang, Z.

L. Zhang, L. Hu, and Z. Jiang, Prog. Phys. 23, 473 (2003).

S. Dai, A. Sugiyama, L. Hu, Z. Liu, and Z. Jiang, J. Non-Cryst. Solids 311, 138 (2002).
[CrossRef]

Keppler, S.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, and J. Hein, Appl. Phys. B 101, 93 (2010).
[CrossRef]

Kessler, A.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, and J. Hein, Appl. Phys. B 101, 93 (2010).
[CrossRef]

Kirchhof, J.

Kurkov, A. S.

A. I. Trikshev, A. S. Kurkov, and V. B. Tsvetkov, Quantum Electron. 42, 417 (2012).
[CrossRef]

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, Quantum Electron. 34, 579 (2004).
[CrossRef]

Kuroiwa, Y.

Leng, Y.

L. Zhang, Y. Leng, J. Zhang, and L. Hu, J. Mater. Sci. Technol. 26, 921 (2010).
[CrossRef]

Li, J.

Litzkendorf, D.

Liu, H.

C. Jiang, H. Liu, Q. Zeng, Y. Wang, J. Zhang, and F. Gan, Proc. SPIE 3942, 312 (2000).
[CrossRef]

Liu, J.

Liu, Z.

S. Dai, A. Sugiyama, L. Hu, Z. Liu, and Z. Jiang, J. Non-Cryst. Solids 311, 138 (2002).
[CrossRef]

Loeser, M.

Lu, K.

K. Lu and N. K. Dutta, J. Appl. Phys. 91, 576 (2002).
[CrossRef]

Malta, O. L.

F. Auzel and O. L. Malta, J. Phys. 44, 201 (1983).
[CrossRef]

Nilsson, J.

O’Connor, M.

M. O’Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, in Conference on Lasers and Electro-Optics (Optical Society of America, 2009).

Ohara, S.

Paramonov, V. M.

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, Quantum Electron. 34, 579 (2004).
[CrossRef]

Peng, M.

Podleska, S.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, and J. Hein, Appl. Phys. B 101, 93 (2010).
[CrossRef]

Qian, Q.

Qiu, J.

Reichelt, A.

Richardson, D. J.

Robinson, C. C.

C. C. Robinson and J. T. Fournier, J. Phys. Chem. Solids 31, 895 (1970).
[CrossRef]

Röser, F.

Sävert, A.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, and J. Hein, Appl. Phys. B 101, 93 (2010).
[CrossRef]

Schnepp, M.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, and J. Hein, Appl. Phys. B 101, 93 (2010).
[CrossRef]

Schramm, U.

Schwuchow, A.

Shen, S.

Siebold, M.

M. Loeser, F. Röser, A. Reichelt, M. Siebold, S. Grimm, D. Litzkendorf, A. Schwuchow, J. Kirchhof, and U. Schramm, Opt. Lett. 37, 4029 (2012).
[CrossRef]

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, and J. Hein, Appl. Phys. B 101, 93 (2010).
[CrossRef]

Sugiyama, A.

S. Dai, A. Sugiyama, L. Hu, Z. Liu, and Z. Jiang, J. Non-Cryst. Solids 311, 138 (2002).
[CrossRef]

Topfer, T.

D. Ehrt and T. Topfer, Proc. SPIE 4102, 95 (2000).
[CrossRef]

Toratani, H.

X. Zou and H. Toratani, Phys. Rev. B 52, 15889 (1995).
[CrossRef]

Trikshev, A. I.

A. I. Trikshev, A. S. Kurkov, and V. B. Tsvetkov, Quantum Electron. 42, 417 (2012).
[CrossRef]

Tsvetkov, V. B.

A. I. Trikshev, A. S. Kurkov, and V. B. Tsvetkov, Quantum Electron. 42, 417 (2012).
[CrossRef]

Viana, B.

P. H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, J. Phys. Condens. Matter 13, 5427 (2001).
[CrossRef]

Vivien, D.

P. H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, J. Phys. Condens. Matter 13, 5427 (2001).
[CrossRef]

Wachs, R.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, and J. Hein, Appl. Phys. B 101, 93 (2010).
[CrossRef]

Wang, J.

Wang, Y.

C. Jiang, H. Liu, Q. Zeng, Y. Wang, J. Zhang, and F. Gan, Proc. SPIE 3942, 312 (2000).
[CrossRef]

Wei, T.

Wei, X.

Wondraczek, L.

G. Gao and L. Wondraczek, J. Mater. Chem. C 1, 1952 (2013).
[CrossRef]

G. Gao and L. Wondraczek, Opt. Mater. Express 3, 633 (2013).
[CrossRef]

Xu, S.

Yang, Z.

Zeng, Q.

C. Jiang, H. Liu, Q. Zeng, Y. Wang, J. Zhang, and F. Gan, Proc. SPIE 3942, 312 (2000).
[CrossRef]

Zhang, J.

L. Zhang, Y. Leng, J. Zhang, and L. Hu, J. Mater. Sci. Technol. 26, 921 (2010).
[CrossRef]

C. Jiang, H. Liu, Q. Zeng, Y. Wang, J. Zhang, and F. Gan, Proc. SPIE 3942, 312 (2000).
[CrossRef]

Zhang, L.

L. Zhang, Y. Leng, J. Zhang, and L. Hu, J. Mater. Sci. Technol. 26, 921 (2010).
[CrossRef]

L. Zhang, L. Hu, and Z. Jiang, Prog. Phys. 23, 473 (2003).

Zhang, Q.

Zhang, W.

Zhou, J.

Zhu, J.

Zhu, R.

Zou, X.

X. Zou and H. Toratani, Phys. Rev. B 52, 15889 (1995).
[CrossRef]

Appl. Phys. B (1)

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, and J. Hein, Appl. Phys. B 101, 93 (2010).
[CrossRef]

Chin. Opt. Lett. (2)

J. Appl. Phys. (1)

K. Lu and N. K. Dutta, J. Appl. Phys. 91, 576 (2002).
[CrossRef]

J. Lumin. (1)

F. Auzel, J. Lumin. 93, 129 (2001).
[CrossRef]

J. Mater. Chem. C (1)

G. Gao and L. Wondraczek, J. Mater. Chem. C 1, 1952 (2013).
[CrossRef]

J. Mater. Sci. Technol. (1)

L. Zhang, Y. Leng, J. Zhang, and L. Hu, J. Mater. Sci. Technol. 26, 921 (2010).
[CrossRef]

J. Non-Cryst. Solids (1)

S. Dai, A. Sugiyama, L. Hu, Z. Liu, and Z. Jiang, J. Non-Cryst. Solids 311, 138 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. (1)

F. Auzel and O. L. Malta, J. Phys. 44, 201 (1983).
[CrossRef]

J. Phys. Chem. Solids (1)

C. C. Robinson and J. T. Fournier, J. Phys. Chem. Solids 31, 895 (1970).
[CrossRef]

J. Phys. Condens. Matter (1)

P. H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, J. Phys. Condens. Matter 13, 5427 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. B (1)

X. Zou and H. Toratani, Phys. Rev. B 52, 15889 (1995).
[CrossRef]

Proc. SPIE (2)

D. Ehrt and T. Topfer, Proc. SPIE 4102, 95 (2000).
[CrossRef]

C. Jiang, H. Liu, Q. Zeng, Y. Wang, J. Zhang, and F. Gan, Proc. SPIE 3942, 312 (2000).
[CrossRef]

Prog. Phys. (1)

L. Zhang, L. Hu, and Z. Jiang, Prog. Phys. 23, 473 (2003).

Quantum Electron. (2)

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, Quantum Electron. 34, 579 (2004).
[CrossRef]

A. I. Trikshev, A. S. Kurkov, and V. B. Tsvetkov, Quantum Electron. 42, 417 (2012).
[CrossRef]

Other (1)

M. O’Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, in Conference on Lasers and Electro-Optics (Optical Society of America, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Absorption and (b) emission spectrum of Yb3+ in silicate glass. Inset is the Stark splitting levels of Yb3+ obtained from the best fit of absorption and emission spectrum of Yb3+, respectively.

Fig. 2.
Fig. 2.

Manifolds of Yb3+ derived from the Lorenz fitting of the absorption and emission spectrum of Yb3+ in studied glasses.

Fig. 3.
Fig. 3.

Barycenter plot of the F25/2 versus the F25/2 levels in studied glasses. Solid line shows the theoretical line.

Fig. 4.
Fig. 4.

(a) Scalar crystal field parameter NJ of studied glasses and (b) asymmetry degree around Yb3+ in studied glasses.

Tables (2)

Tables Icon

Table 1. Nominal Compositions of the Yb3+-doped Laser Glasses

Tables Icon

Table 2 Ion Concentration of Yb3+ (NYb3+), Highest Stark Splitting Energy of F7/22 Level (Ed), Gap Between “b” and “c” Levels (ΔEb-c), and Peak Emission Wavelength (λp) of the Studied Glasses

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔEJ=(3ga2g(ga+2)(ga+1)π)1/2|k=2,4·6|JCkJ||1/3NJ,
ΔE(7/2)=0.245NJ.

Metrics