Abstract

We use digitally enhanced heterodyne interferometry to measure the stability of optical fiber laser frequency references. Suppression of laser frequency noise by over four orders of magnitude is achieved using post processing time delay interferometry, allowing us to measure the mechanical stability for frequencies as low as 100 μHz. The performance of the digitally enhanced heterodyne interferometer platform used here is not practically limited by the dynamic range or bandwidth issues that can occur in feedback stabilization systems. This allows longer measurement times, better frequency discrimination, a reduction in spatially uncorrelated noise sources and an increase in interferometer sensitivity. An optical fiber frequency reference with the stability reported here, over a signal band of 20 mHz–1 Hz, has potential for use in demanding environments, such as space-based interferometry missions and optical flywheel applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, Nat. Photonics 5, 158 (2011).
    [CrossRef]
  2. F. Kefelian, H. Jiang, P. Lemonde, and G. Santarelli, Opt. Lett. 34, 7 (2009).
    [CrossRef]
  3. http://www.kvh.com .
  4. T. G. McRae, S. Ngo, D. A. Shaddock, M. T. L. Hsu, and M. B. Gray, Opt. Lett. 38, 278 (2013).
    [CrossRef]
  5. B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, and W. M. Folkner, J. Geodyn. 22, 094027 (2012).
  6. K. Döringshoff, I. Ernsting, and A. Wicht, Opt. Lett. 38, 19 (2007).
  7. D. M. R. Wuchenich, T. T.-Y. Lam, J. H. Chow, D. E. McClelland, and D. A. Shaddock, Opt. Lett. 32, 5 (2011).
  8. T. T.-Y. Lam, J. H. Chow, D. A. Shaddock, I. C. M. Littler, G. Gagliardi, M. B. Gray, and D. E. McClelland, Appl. Opt. 49, 4029 (2010).
    [CrossRef]
  9. J. Miller, S. Ngo, A. J. Mullavey, B. J. J. Slagmolen, D. A. Shaddock, and D. E. McClelland, Opt. Lett. 37, 23 (2012).
  10. A. Sutton, K. McKenzie, B. Ware, and D. Shaddock, Opt. Express 18, 20 (2013).
  11. R. Spero, B. Bachman, G. de Vine, J. Dickson, W. Klipstein, T. Ozawa, K. McKenzie, D. Shaddock, D. Robison, A. Sutton, and B. Ware, Class. Quantum Grav. 28, 094007 (2011).
    [CrossRef]
  12. D. J. Bowman, M. J. King, A. J. Sutton, D. M. Wuchenich, R. L. Ward, E. A. Malikides, D. E. McClelland, and D. A. Shaddock, Opt. Lett. 38, 1137 (2013).
    [CrossRef]
  13. D. A. Shaddock, Opt. Lett. 32, 3355 (2007).
    [CrossRef]
  14. http://www.orbitslightwave.com .
  15. T. T.-Y. Lam, M. B. Gray, D. A. Shaddock, D. E. McClelland, and J. H. Chow, Opt. Lett. 37, 11 (2012).
  16. R. E. Bartolo, A. B. Tveten, and A. Dandridge, IEEE J. Quantum Electron. 48, 720 (2012).
    [CrossRef]
  17. http://www.specialtyphotonics.com .
  18. S. Blin, K. K. Hyang, M. J. F. Digonnet, and G. S. Kino, J. Lightwave Technol. 25, 861 (2007).
    [CrossRef]

2013

2012

B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, and W. M. Folkner, J. Geodyn. 22, 094027 (2012).

J. Miller, S. Ngo, A. J. Mullavey, B. J. J. Slagmolen, D. A. Shaddock, and D. E. McClelland, Opt. Lett. 37, 23 (2012).

T. T.-Y. Lam, M. B. Gray, D. A. Shaddock, D. E. McClelland, and J. H. Chow, Opt. Lett. 37, 11 (2012).

R. E. Bartolo, A. B. Tveten, and A. Dandridge, IEEE J. Quantum Electron. 48, 720 (2012).
[CrossRef]

2011

D. M. R. Wuchenich, T. T.-Y. Lam, J. H. Chow, D. E. McClelland, and D. A. Shaddock, Opt. Lett. 32, 5 (2011).

R. Spero, B. Bachman, G. de Vine, J. Dickson, W. Klipstein, T. Ozawa, K. McKenzie, D. Shaddock, D. Robison, A. Sutton, and B. Ware, Class. Quantum Grav. 28, 094007 (2011).
[CrossRef]

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, Nat. Photonics 5, 158 (2011).
[CrossRef]

2010

2009

2007

Bachman, B.

R. Spero, B. Bachman, G. de Vine, J. Dickson, W. Klipstein, T. Ozawa, K. McKenzie, D. Shaddock, D. Robison, A. Sutton, and B. Ware, Class. Quantum Grav. 28, 094007 (2011).
[CrossRef]

Bartolo, R. E.

R. E. Bartolo, A. B. Tveten, and A. Dandridge, IEEE J. Quantum Electron. 48, 720 (2012).
[CrossRef]

Blin, S.

Bowman, D. J.

Chow, J. H.

Dandridge, A.

R. E. Bartolo, A. B. Tveten, and A. Dandridge, IEEE J. Quantum Electron. 48, 720 (2012).
[CrossRef]

Danzmann, K.

B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, and W. M. Folkner, J. Geodyn. 22, 094027 (2012).

de Vine, G.

R. Spero, B. Bachman, G. de Vine, J. Dickson, W. Klipstein, T. Ozawa, K. McKenzie, D. Shaddock, D. Robison, A. Sutton, and B. Ware, Class. Quantum Grav. 28, 094007 (2011).
[CrossRef]

Dickson, J.

R. Spero, B. Bachman, G. de Vine, J. Dickson, W. Klipstein, T. Ozawa, K. McKenzie, D. Shaddock, D. Robison, A. Sutton, and B. Ware, Class. Quantum Grav. 28, 094007 (2011).
[CrossRef]

Digonnet, M. J. F.

Döringshoff, K.

Ernsting, I.

Folkner, W. M.

B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, and W. M. Folkner, J. Geodyn. 22, 094027 (2012).

Fox, R. W.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, Nat. Photonics 5, 158 (2011).
[CrossRef]

Gagliardi, G.

Gray, M. B.

Heinzel, G.

B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, and W. M. Folkner, J. Geodyn. 22, 094027 (2012).

Hsu, M. T. L.

Hyang, K. K.

Jiang, H.

Jiang, Y. Y.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, Nat. Photonics 5, 158 (2011).
[CrossRef]

Kefelian, F.

King, M. J.

Kino, G. S.

Klipstein, W.

R. Spero, B. Bachman, G. de Vine, J. Dickson, W. Klipstein, T. Ozawa, K. McKenzie, D. Shaddock, D. Robison, A. Sutton, and B. Ware, Class. Quantum Grav. 28, 094007 (2011).
[CrossRef]

Klipstein, W. M.

B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, and W. M. Folkner, J. Geodyn. 22, 094027 (2012).

Lam, T. T.-Y.

Lemke, N. D.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, Nat. Photonics 5, 158 (2011).
[CrossRef]

Lemonde, P.

Littler, I. C. M.

Ludlow, A. D.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, Nat. Photonics 5, 158 (2011).
[CrossRef]

Ma, L. S.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, Nat. Photonics 5, 158 (2011).
[CrossRef]

Malikides, E. A.

McClelland, D. E.

McKenzie, K.

A. Sutton, K. McKenzie, B. Ware, and D. Shaddock, Opt. Express 18, 20 (2013).

R. Spero, B. Bachman, G. de Vine, J. Dickson, W. Klipstein, T. Ozawa, K. McKenzie, D. Shaddock, D. Robison, A. Sutton, and B. Ware, Class. Quantum Grav. 28, 094007 (2011).
[CrossRef]

McRae, T. G.

Miller, J.

J. Miller, S. Ngo, A. J. Mullavey, B. J. J. Slagmolen, D. A. Shaddock, and D. E. McClelland, Opt. Lett. 37, 23 (2012).

Mullavey, A. J.

J. Miller, S. Ngo, A. J. Mullavey, B. J. J. Slagmolen, D. A. Shaddock, and D. E. McClelland, Opt. Lett. 37, 23 (2012).

Ngo, S.

T. G. McRae, S. Ngo, D. A. Shaddock, M. T. L. Hsu, and M. B. Gray, Opt. Lett. 38, 278 (2013).
[CrossRef]

J. Miller, S. Ngo, A. J. Mullavey, B. J. J. Slagmolen, D. A. Shaddock, and D. E. McClelland, Opt. Lett. 37, 23 (2012).

Oates, C. W.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, Nat. Photonics 5, 158 (2011).
[CrossRef]

Ozawa, T.

R. Spero, B. Bachman, G. de Vine, J. Dickson, W. Klipstein, T. Ozawa, K. McKenzie, D. Shaddock, D. Robison, A. Sutton, and B. Ware, Class. Quantum Grav. 28, 094007 (2011).
[CrossRef]

Robison, D.

R. Spero, B. Bachman, G. de Vine, J. Dickson, W. Klipstein, T. Ozawa, K. McKenzie, D. Shaddock, D. Robison, A. Sutton, and B. Ware, Class. Quantum Grav. 28, 094007 (2011).
[CrossRef]

Santarelli, G.

Shaddock, D.

A. Sutton, K. McKenzie, B. Ware, and D. Shaddock, Opt. Express 18, 20 (2013).

R. Spero, B. Bachman, G. de Vine, J. Dickson, W. Klipstein, T. Ozawa, K. McKenzie, D. Shaddock, D. Robison, A. Sutton, and B. Ware, Class. Quantum Grav. 28, 094007 (2011).
[CrossRef]

Shaddock, D. A.

Sheard, B. S.

B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, and W. M. Folkner, J. Geodyn. 22, 094027 (2012).

Sherman, J. A.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, Nat. Photonics 5, 158 (2011).
[CrossRef]

Slagmolen, B. J. J.

J. Miller, S. Ngo, A. J. Mullavey, B. J. J. Slagmolen, D. A. Shaddock, and D. E. McClelland, Opt. Lett. 37, 23 (2012).

Spero, R.

R. Spero, B. Bachman, G. de Vine, J. Dickson, W. Klipstein, T. Ozawa, K. McKenzie, D. Shaddock, D. Robison, A. Sutton, and B. Ware, Class. Quantum Grav. 28, 094007 (2011).
[CrossRef]

Sutton, A.

A. Sutton, K. McKenzie, B. Ware, and D. Shaddock, Opt. Express 18, 20 (2013).

R. Spero, B. Bachman, G. de Vine, J. Dickson, W. Klipstein, T. Ozawa, K. McKenzie, D. Shaddock, D. Robison, A. Sutton, and B. Ware, Class. Quantum Grav. 28, 094007 (2011).
[CrossRef]

Sutton, A. J.

Tveten, A. B.

R. E. Bartolo, A. B. Tveten, and A. Dandridge, IEEE J. Quantum Electron. 48, 720 (2012).
[CrossRef]

Ward, R. L.

Ware, B.

A. Sutton, K. McKenzie, B. Ware, and D. Shaddock, Opt. Express 18, 20 (2013).

R. Spero, B. Bachman, G. de Vine, J. Dickson, W. Klipstein, T. Ozawa, K. McKenzie, D. Shaddock, D. Robison, A. Sutton, and B. Ware, Class. Quantum Grav. 28, 094007 (2011).
[CrossRef]

Wicht, A.

Wuchenich, D. M.

Wuchenich, D. M. R.

Appl. Opt.

Class. Quantum Grav.

R. Spero, B. Bachman, G. de Vine, J. Dickson, W. Klipstein, T. Ozawa, K. McKenzie, D. Shaddock, D. Robison, A. Sutton, and B. Ware, Class. Quantum Grav. 28, 094007 (2011).
[CrossRef]

IEEE J. Quantum Electron.

R. E. Bartolo, A. B. Tveten, and A. Dandridge, IEEE J. Quantum Electron. 48, 720 (2012).
[CrossRef]

J. Geodyn.

B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, and W. M. Folkner, J. Geodyn. 22, 094027 (2012).

J. Lightwave Technol.

Nat. Photonics

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, Nat. Photonics 5, 158 (2011).
[CrossRef]

Opt. Express

A. Sutton, K. McKenzie, B. Ware, and D. Shaddock, Opt. Express 18, 20 (2013).

Opt. Lett.

Other

http://www.specialtyphotonics.com .

http://www.kvh.com .

http://www.orbitslightwave.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the OFMI used to track the laser frequency. FC, fiber coupler; AOM, acousto-optic modulator at carrier frequency; AOMLO, acousto-optic modulator at local oscillator frequency; FM, Faraday mirror; PD, low noise photodetector; PRN, pseudorandom noise; FPGA, field programmable gate array; Delay (MI), electronic delay to match time delay of the respective signal path for a particular interferometer; ϕ1, ϕ2, ϕ3, and ϕ4 are the real-time phase measurements for each interferometer path; Δϕ(MI1) and Δϕ(MI2) are the phase measurements from interferometer 1 and interferometer 2, respectively, after being scaled by the normalized time delays (1+α) and (1α), where α is a constant and Δϕ is the differential phase measurement.

Fig. 2.
Fig. 2.

Transfer function analysis for time delayed interferometry. (i) Amplitude of the transfer function (Tω) from laser frequency to the interferometer differential phase output for a delay of 1×104s (blue) and 0.8×104s (red). (ii) Phase of the above transfer function. (iii) Difference between Tω and a scaling constant τ over our signal bandwidth (DC to 50 Hz).

Fig. 3.
Fig. 3.

Frequency noise spectrum of the OFMI. (i) Free running noise traces for each OFMI (two blue traces). (ii) Subtraction of the two interferometer frequency signals (green). (iii) Each interferometer frequency signal is scaled with TDI before subtraction (solid red at low frequency, then dotted red at high frequency for clarity). The solid black curve is the frequency stability requirement for the GRACE FO laser range-finding instrument and the dashed extension (iv) represents future mission objectives [5].

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Tϕ=1eiωτ=2isin(ωτ2)eiωτ2,
Tω=2ωsin(ωτ2)eiωτ2.
Δϕ=Tω(MI1)×Tpp(MI2)Tω(MI2)×Tpp(MI1),
Δϕ=Tω(MI1)×τ2Tω(MI2)×τ1,

Metrics