Abstract

We introduce an infrared pump–terahertz probe technique to measure the thermalization dynamics of aqueous solutions with a time resolution <200fs. This technique makes use of the sensitivity of the terahertz absorption to the temperature of the hydrogen bond network. The thermalization dynamics of different aqueous solutions are measured and compared to the dynamics inferred from ultrafast infrared pump–infrared probe measurements on the intramolecular stretch vibration of water. This technique can shed new light on important aspects of energy transfer and heat dynamics and is applicable to a wide range of systems.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-Y. Ruan, V. A. Lobastov, F. Vigliotti, S. Chen, and A. H. Zewail, Science 304, 80 (2004).
    [CrossRef]
  2. P. Wernet, G. Gavrila, K. Godehusen, C. Weniger, E. T. J. Nibbering, T. Elsaesser, and W. Eberhardt, Appl. Phys. A 92, 511 (2008).
    [CrossRef]
  3. N. Huse, H. Wen, D. Nordlund, E. Szilagyi, D. Daranciang, T. A. Miller, A. Nilsson, R. W. Schoenlein, and A. M. Lindenberg, Phys. Chem. Chem. Phys. 11, 3951 (2009).
    [CrossRef]
  4. H. Wen, N. Huse, R. W. Schoenlein, and A. M. Lindenberg, J. Chem. Phys. 131, 234505 (2009).
    [CrossRef]
  5. C. M. Phillips, Y. Mizutani, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 92, 7292 (1995).
    [CrossRef]
  6. H. Ma, C. Wan, and A. H. Zewail, J. Am. Chem. Soc. 128, 6338 (2006).
    [CrossRef]
  7. T. Steinel, J. B. Asbury, J. Zheng, and M. D. Fayer, J. Phys. Chem. A 108, 10957 (2004).
    [CrossRef]
  8. A. J. Lock, S. Woutersen, and H. J. Bakker, J. Phys. Chem. A 105, 1238 (2001).
    [CrossRef]
  9. C. Rønne and S. R. Keiding, J. Mol. Liq. 101, 199 (2002).
    [CrossRef]
  10. R. Buchner, G. T. Hefter, and P. M. May, J. Phys. Chem. A 103, 1 (1999).
    [CrossRef]
  11. V. M. Zolotarev, B. A. Mikhilov, L. L. Alperovich, and S. I. Popov, Opt. Spectrosc. 27, 430 (1969).
  12. K. J. Tielrooij, R. L. A. Timmer, H. J. Bakker, and M. Bonn, Phys. Rev. Lett. 102, 198303 (2009).
    [CrossRef]
  13. E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, J. Chem. Phys. 121, 394 (2004).
    [CrossRef]
  14. We measured the transmission of the IR and the THz beam through pinholes of different sizes. The IR beam is transmitted completely by a 500 μm pinhole and partially blocked by a 400 μm pinhole. The THz beam is transmitted by 10% by the 500 μm pinhole. Therefore, we estimate that 10% of the THz beam overlaps with the IR beam, thus arriving at a scaling factor of 0.1.
  15. M. van Exter, Ch. Fattinger, and D. Grischkowsky, Opt. Lett. 14, 1128 (1989).
    [CrossRef]
  16. M. F. Kropman and H. J. Bakker, J. Am. Chem. Soc. 126, 9135 (2004).
    [CrossRef]
  17. S. Woutersen and H. J. Bakker, Phys. Rev. Lett. 96, 138305 (2006).
    [CrossRef]
  18. L. Piatkowski, K. B. Eisenthal, and H. J. Bakker, Phys. Chem. Chem. Phys. 11, 9033 (2009).
    [CrossRef]
  19. A. J. Lock and H. J. Bakker, J. Chem. Phys. 117, 1708 (2002).
    [CrossRef]
  20. M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
    [CrossRef]
  21. S. Ashihara, N. Huse, A. Espagne, E. T. J. Nibbering, and T. Elsaesser, J. Phys. Chem. A 111, 743 (2007).
    [CrossRef]
  22. J. Lindner, D. Cringus, M. S. Pshenichnikov, and P. Vöhringer, Chem. Phys. 341, 326 (2007).
    [CrossRef]
  23. L. Piatkowski, “Water interacting with interfaces, ions and itself,” Ph.D. thesis (University of Amsterdam, 2012).

2009

N. Huse, H. Wen, D. Nordlund, E. Szilagyi, D. Daranciang, T. A. Miller, A. Nilsson, R. W. Schoenlein, and A. M. Lindenberg, Phys. Chem. Chem. Phys. 11, 3951 (2009).
[CrossRef]

H. Wen, N. Huse, R. W. Schoenlein, and A. M. Lindenberg, J. Chem. Phys. 131, 234505 (2009).
[CrossRef]

K. J. Tielrooij, R. L. A. Timmer, H. J. Bakker, and M. Bonn, Phys. Rev. Lett. 102, 198303 (2009).
[CrossRef]

L. Piatkowski, K. B. Eisenthal, and H. J. Bakker, Phys. Chem. Chem. Phys. 11, 9033 (2009).
[CrossRef]

2008

P. Wernet, G. Gavrila, K. Godehusen, C. Weniger, E. T. J. Nibbering, T. Elsaesser, and W. Eberhardt, Appl. Phys. A 92, 511 (2008).
[CrossRef]

2007

S. Ashihara, N. Huse, A. Espagne, E. T. J. Nibbering, and T. Elsaesser, J. Phys. Chem. A 111, 743 (2007).
[CrossRef]

J. Lindner, D. Cringus, M. S. Pshenichnikov, and P. Vöhringer, Chem. Phys. 341, 326 (2007).
[CrossRef]

2006

S. Woutersen and H. J. Bakker, Phys. Rev. Lett. 96, 138305 (2006).
[CrossRef]

H. Ma, C. Wan, and A. H. Zewail, J. Am. Chem. Soc. 128, 6338 (2006).
[CrossRef]

2005

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
[CrossRef]

2004

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, J. Chem. Phys. 121, 394 (2004).
[CrossRef]

M. F. Kropman and H. J. Bakker, J. Am. Chem. Soc. 126, 9135 (2004).
[CrossRef]

T. Steinel, J. B. Asbury, J. Zheng, and M. D. Fayer, J. Phys. Chem. A 108, 10957 (2004).
[CrossRef]

C.-Y. Ruan, V. A. Lobastov, F. Vigliotti, S. Chen, and A. H. Zewail, Science 304, 80 (2004).
[CrossRef]

2002

C. Rønne and S. R. Keiding, J. Mol. Liq. 101, 199 (2002).
[CrossRef]

A. J. Lock and H. J. Bakker, J. Chem. Phys. 117, 1708 (2002).
[CrossRef]

2001

A. J. Lock, S. Woutersen, and H. J. Bakker, J. Phys. Chem. A 105, 1238 (2001).
[CrossRef]

1999

R. Buchner, G. T. Hefter, and P. M. May, J. Phys. Chem. A 103, 1 (1999).
[CrossRef]

1995

C. M. Phillips, Y. Mizutani, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 92, 7292 (1995).
[CrossRef]

1989

1969

V. M. Zolotarev, B. A. Mikhilov, L. L. Alperovich, and S. I. Popov, Opt. Spectrosc. 27, 430 (1969).

Alperovich, L. L.

V. M. Zolotarev, B. A. Mikhilov, L. L. Alperovich, and S. I. Popov, Opt. Spectrosc. 27, 430 (1969).

Asbury, J. B.

T. Steinel, J. B. Asbury, J. Zheng, and M. D. Fayer, J. Phys. Chem. A 108, 10957 (2004).
[CrossRef]

Ashihara, S.

S. Ashihara, N. Huse, A. Espagne, E. T. J. Nibbering, and T. Elsaesser, J. Phys. Chem. A 111, 743 (2007).
[CrossRef]

Bakker, H. J.

K. J. Tielrooij, R. L. A. Timmer, H. J. Bakker, and M. Bonn, Phys. Rev. Lett. 102, 198303 (2009).
[CrossRef]

L. Piatkowski, K. B. Eisenthal, and H. J. Bakker, Phys. Chem. Chem. Phys. 11, 9033 (2009).
[CrossRef]

S. Woutersen and H. J. Bakker, Phys. Rev. Lett. 96, 138305 (2006).
[CrossRef]

M. F. Kropman and H. J. Bakker, J. Am. Chem. Soc. 126, 9135 (2004).
[CrossRef]

A. J. Lock and H. J. Bakker, J. Chem. Phys. 117, 1708 (2002).
[CrossRef]

A. J. Lock, S. Woutersen, and H. J. Bakker, J. Phys. Chem. A 105, 1238 (2001).
[CrossRef]

Bonn, M.

K. J. Tielrooij, R. L. A. Timmer, H. J. Bakker, and M. Bonn, Phys. Rev. Lett. 102, 198303 (2009).
[CrossRef]

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, J. Chem. Phys. 121, 394 (2004).
[CrossRef]

Bruner, B. D.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
[CrossRef]

Buchner, R.

R. Buchner, G. T. Hefter, and P. M. May, J. Phys. Chem. A 103, 1 (1999).
[CrossRef]

Chen, S.

C.-Y. Ruan, V. A. Lobastov, F. Vigliotti, S. Chen, and A. H. Zewail, Science 304, 80 (2004).
[CrossRef]

Chugh, B.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
[CrossRef]

Cowan, M. L.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
[CrossRef]

Cringus, D.

J. Lindner, D. Cringus, M. S. Pshenichnikov, and P. Vöhringer, Chem. Phys. 341, 326 (2007).
[CrossRef]

Daranciang, D.

N. Huse, H. Wen, D. Nordlund, E. Szilagyi, D. Daranciang, T. A. Miller, A. Nilsson, R. W. Schoenlein, and A. M. Lindenberg, Phys. Chem. Chem. Phys. 11, 3951 (2009).
[CrossRef]

Dwyer, J. R.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
[CrossRef]

Eberhardt, W.

P. Wernet, G. Gavrila, K. Godehusen, C. Weniger, E. T. J. Nibbering, T. Elsaesser, and W. Eberhardt, Appl. Phys. A 92, 511 (2008).
[CrossRef]

Eisenthal, K. B.

L. Piatkowski, K. B. Eisenthal, and H. J. Bakker, Phys. Chem. Chem. Phys. 11, 9033 (2009).
[CrossRef]

Elsaesser, T.

P. Wernet, G. Gavrila, K. Godehusen, C. Weniger, E. T. J. Nibbering, T. Elsaesser, and W. Eberhardt, Appl. Phys. A 92, 511 (2008).
[CrossRef]

S. Ashihara, N. Huse, A. Espagne, E. T. J. Nibbering, and T. Elsaesser, J. Phys. Chem. A 111, 743 (2007).
[CrossRef]

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
[CrossRef]

Espagne, A.

S. Ashihara, N. Huse, A. Espagne, E. T. J. Nibbering, and T. Elsaesser, J. Phys. Chem. A 111, 743 (2007).
[CrossRef]

Fattinger, Ch.

Fayer, M. D.

T. Steinel, J. B. Asbury, J. Zheng, and M. D. Fayer, J. Phys. Chem. A 108, 10957 (2004).
[CrossRef]

Gavrila, G.

P. Wernet, G. Gavrila, K. Godehusen, C. Weniger, E. T. J. Nibbering, T. Elsaesser, and W. Eberhardt, Appl. Phys. A 92, 511 (2008).
[CrossRef]

Godehusen, K.

P. Wernet, G. Gavrila, K. Godehusen, C. Weniger, E. T. J. Nibbering, T. Elsaesser, and W. Eberhardt, Appl. Phys. A 92, 511 (2008).
[CrossRef]

Grischkowsky, D.

Hefter, G. T.

R. Buchner, G. T. Hefter, and P. M. May, J. Phys. Chem. A 103, 1 (1999).
[CrossRef]

Heinz, T. F.

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, J. Chem. Phys. 121, 394 (2004).
[CrossRef]

Hochstrasser, R. M.

C. M. Phillips, Y. Mizutani, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 92, 7292 (1995).
[CrossRef]

Huse, N.

N. Huse, H. Wen, D. Nordlund, E. Szilagyi, D. Daranciang, T. A. Miller, A. Nilsson, R. W. Schoenlein, and A. M. Lindenberg, Phys. Chem. Chem. Phys. 11, 3951 (2009).
[CrossRef]

H. Wen, N. Huse, R. W. Schoenlein, and A. M. Lindenberg, J. Chem. Phys. 131, 234505 (2009).
[CrossRef]

S. Ashihara, N. Huse, A. Espagne, E. T. J. Nibbering, and T. Elsaesser, J. Phys. Chem. A 111, 743 (2007).
[CrossRef]

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
[CrossRef]

Keiding, S. R.

C. Rønne and S. R. Keiding, J. Mol. Liq. 101, 199 (2002).
[CrossRef]

Knoesel, E.

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, J. Chem. Phys. 121, 394 (2004).
[CrossRef]

Kropman, M. F.

M. F. Kropman and H. J. Bakker, J. Am. Chem. Soc. 126, 9135 (2004).
[CrossRef]

Lindenberg, A. M.

N. Huse, H. Wen, D. Nordlund, E. Szilagyi, D. Daranciang, T. A. Miller, A. Nilsson, R. W. Schoenlein, and A. M. Lindenberg, Phys. Chem. Chem. Phys. 11, 3951 (2009).
[CrossRef]

H. Wen, N. Huse, R. W. Schoenlein, and A. M. Lindenberg, J. Chem. Phys. 131, 234505 (2009).
[CrossRef]

Lindner, J.

J. Lindner, D. Cringus, M. S. Pshenichnikov, and P. Vöhringer, Chem. Phys. 341, 326 (2007).
[CrossRef]

Lobastov, V. A.

C.-Y. Ruan, V. A. Lobastov, F. Vigliotti, S. Chen, and A. H. Zewail, Science 304, 80 (2004).
[CrossRef]

Lock, A. J.

A. J. Lock and H. J. Bakker, J. Chem. Phys. 117, 1708 (2002).
[CrossRef]

A. J. Lock, S. Woutersen, and H. J. Bakker, J. Phys. Chem. A 105, 1238 (2001).
[CrossRef]

Ma, H.

H. Ma, C. Wan, and A. H. Zewail, J. Am. Chem. Soc. 128, 6338 (2006).
[CrossRef]

May, P. M.

R. Buchner, G. T. Hefter, and P. M. May, J. Phys. Chem. A 103, 1 (1999).
[CrossRef]

Mikhilov, B. A.

V. M. Zolotarev, B. A. Mikhilov, L. L. Alperovich, and S. I. Popov, Opt. Spectrosc. 27, 430 (1969).

Miller, R. J. D.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
[CrossRef]

Miller, T. A.

N. Huse, H. Wen, D. Nordlund, E. Szilagyi, D. Daranciang, T. A. Miller, A. Nilsson, R. W. Schoenlein, and A. M. Lindenberg, Phys. Chem. Chem. Phys. 11, 3951 (2009).
[CrossRef]

Mizutani, Y.

C. M. Phillips, Y. Mizutani, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 92, 7292 (1995).
[CrossRef]

Nibbering, E. T. J.

P. Wernet, G. Gavrila, K. Godehusen, C. Weniger, E. T. J. Nibbering, T. Elsaesser, and W. Eberhardt, Appl. Phys. A 92, 511 (2008).
[CrossRef]

S. Ashihara, N. Huse, A. Espagne, E. T. J. Nibbering, and T. Elsaesser, J. Phys. Chem. A 111, 743 (2007).
[CrossRef]

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
[CrossRef]

Nilsson, A.

N. Huse, H. Wen, D. Nordlund, E. Szilagyi, D. Daranciang, T. A. Miller, A. Nilsson, R. W. Schoenlein, and A. M. Lindenberg, Phys. Chem. Chem. Phys. 11, 3951 (2009).
[CrossRef]

Nordlund, D.

N. Huse, H. Wen, D. Nordlund, E. Szilagyi, D. Daranciang, T. A. Miller, A. Nilsson, R. W. Schoenlein, and A. M. Lindenberg, Phys. Chem. Chem. Phys. 11, 3951 (2009).
[CrossRef]

Phillips, C. M.

C. M. Phillips, Y. Mizutani, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 92, 7292 (1995).
[CrossRef]

Piatkowski, L.

L. Piatkowski, K. B. Eisenthal, and H. J. Bakker, Phys. Chem. Chem. Phys. 11, 9033 (2009).
[CrossRef]

L. Piatkowski, “Water interacting with interfaces, ions and itself,” Ph.D. thesis (University of Amsterdam, 2012).

Popov, S. I.

V. M. Zolotarev, B. A. Mikhilov, L. L. Alperovich, and S. I. Popov, Opt. Spectrosc. 27, 430 (1969).

Pshenichnikov, M. S.

J. Lindner, D. Cringus, M. S. Pshenichnikov, and P. Vöhringer, Chem. Phys. 341, 326 (2007).
[CrossRef]

Rønne, C.

C. Rønne and S. R. Keiding, J. Mol. Liq. 101, 199 (2002).
[CrossRef]

Ruan, C.-Y.

C.-Y. Ruan, V. A. Lobastov, F. Vigliotti, S. Chen, and A. H. Zewail, Science 304, 80 (2004).
[CrossRef]

Schoenlein, R. W.

N. Huse, H. Wen, D. Nordlund, E. Szilagyi, D. Daranciang, T. A. Miller, A. Nilsson, R. W. Schoenlein, and A. M. Lindenberg, Phys. Chem. Chem. Phys. 11, 3951 (2009).
[CrossRef]

H. Wen, N. Huse, R. W. Schoenlein, and A. M. Lindenberg, J. Chem. Phys. 131, 234505 (2009).
[CrossRef]

Shan, J.

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, J. Chem. Phys. 121, 394 (2004).
[CrossRef]

Steinel, T.

T. Steinel, J. B. Asbury, J. Zheng, and M. D. Fayer, J. Phys. Chem. A 108, 10957 (2004).
[CrossRef]

Szilagyi, E.

N. Huse, H. Wen, D. Nordlund, E. Szilagyi, D. Daranciang, T. A. Miller, A. Nilsson, R. W. Schoenlein, and A. M. Lindenberg, Phys. Chem. Chem. Phys. 11, 3951 (2009).
[CrossRef]

Tielrooij, K. J.

K. J. Tielrooij, R. L. A. Timmer, H. J. Bakker, and M. Bonn, Phys. Rev. Lett. 102, 198303 (2009).
[CrossRef]

Timmer, R. L. A.

K. J. Tielrooij, R. L. A. Timmer, H. J. Bakker, and M. Bonn, Phys. Rev. Lett. 102, 198303 (2009).
[CrossRef]

van Exter, M.

Vigliotti, F.

C.-Y. Ruan, V. A. Lobastov, F. Vigliotti, S. Chen, and A. H. Zewail, Science 304, 80 (2004).
[CrossRef]

Vöhringer, P.

J. Lindner, D. Cringus, M. S. Pshenichnikov, and P. Vöhringer, Chem. Phys. 341, 326 (2007).
[CrossRef]

Wan, C.

H. Ma, C. Wan, and A. H. Zewail, J. Am. Chem. Soc. 128, 6338 (2006).
[CrossRef]

Wang, F.

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, J. Chem. Phys. 121, 394 (2004).
[CrossRef]

Wen, H.

N. Huse, H. Wen, D. Nordlund, E. Szilagyi, D. Daranciang, T. A. Miller, A. Nilsson, R. W. Schoenlein, and A. M. Lindenberg, Phys. Chem. Chem. Phys. 11, 3951 (2009).
[CrossRef]

H. Wen, N. Huse, R. W. Schoenlein, and A. M. Lindenberg, J. Chem. Phys. 131, 234505 (2009).
[CrossRef]

Weniger, C.

P. Wernet, G. Gavrila, K. Godehusen, C. Weniger, E. T. J. Nibbering, T. Elsaesser, and W. Eberhardt, Appl. Phys. A 92, 511 (2008).
[CrossRef]

Wernet, P.

P. Wernet, G. Gavrila, K. Godehusen, C. Weniger, E. T. J. Nibbering, T. Elsaesser, and W. Eberhardt, Appl. Phys. A 92, 511 (2008).
[CrossRef]

Woutersen, S.

S. Woutersen and H. J. Bakker, Phys. Rev. Lett. 96, 138305 (2006).
[CrossRef]

A. J. Lock, S. Woutersen, and H. J. Bakker, J. Phys. Chem. A 105, 1238 (2001).
[CrossRef]

Zewail, A. H.

H. Ma, C. Wan, and A. H. Zewail, J. Am. Chem. Soc. 128, 6338 (2006).
[CrossRef]

C.-Y. Ruan, V. A. Lobastov, F. Vigliotti, S. Chen, and A. H. Zewail, Science 304, 80 (2004).
[CrossRef]

Zheng, J.

T. Steinel, J. B. Asbury, J. Zheng, and M. D. Fayer, J. Phys. Chem. A 108, 10957 (2004).
[CrossRef]

Zolotarev, V. M.

V. M. Zolotarev, B. A. Mikhilov, L. L. Alperovich, and S. I. Popov, Opt. Spectrosc. 27, 430 (1969).

Appl. Phys. A

P. Wernet, G. Gavrila, K. Godehusen, C. Weniger, E. T. J. Nibbering, T. Elsaesser, and W. Eberhardt, Appl. Phys. A 92, 511 (2008).
[CrossRef]

Chem. Phys.

J. Lindner, D. Cringus, M. S. Pshenichnikov, and P. Vöhringer, Chem. Phys. 341, 326 (2007).
[CrossRef]

J. Am. Chem. Soc.

H. Ma, C. Wan, and A. H. Zewail, J. Am. Chem. Soc. 128, 6338 (2006).
[CrossRef]

M. F. Kropman and H. J. Bakker, J. Am. Chem. Soc. 126, 9135 (2004).
[CrossRef]

J. Chem. Phys.

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, J. Chem. Phys. 121, 394 (2004).
[CrossRef]

H. Wen, N. Huse, R. W. Schoenlein, and A. M. Lindenberg, J. Chem. Phys. 131, 234505 (2009).
[CrossRef]

A. J. Lock and H. J. Bakker, J. Chem. Phys. 117, 1708 (2002).
[CrossRef]

J. Mol. Liq.

C. Rønne and S. R. Keiding, J. Mol. Liq. 101, 199 (2002).
[CrossRef]

J. Phys. Chem. A

R. Buchner, G. T. Hefter, and P. M. May, J. Phys. Chem. A 103, 1 (1999).
[CrossRef]

T. Steinel, J. B. Asbury, J. Zheng, and M. D. Fayer, J. Phys. Chem. A 108, 10957 (2004).
[CrossRef]

A. J. Lock, S. Woutersen, and H. J. Bakker, J. Phys. Chem. A 105, 1238 (2001).
[CrossRef]

S. Ashihara, N. Huse, A. Espagne, E. T. J. Nibbering, and T. Elsaesser, J. Phys. Chem. A 111, 743 (2007).
[CrossRef]

Nature

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
[CrossRef]

Opt. Lett.

Opt. Spectrosc.

V. M. Zolotarev, B. A. Mikhilov, L. L. Alperovich, and S. I. Popov, Opt. Spectrosc. 27, 430 (1969).

Phys. Chem. Chem. Phys.

N. Huse, H. Wen, D. Nordlund, E. Szilagyi, D. Daranciang, T. A. Miller, A. Nilsson, R. W. Schoenlein, and A. M. Lindenberg, Phys. Chem. Chem. Phys. 11, 3951 (2009).
[CrossRef]

L. Piatkowski, K. B. Eisenthal, and H. J. Bakker, Phys. Chem. Chem. Phys. 11, 9033 (2009).
[CrossRef]

Phys. Rev. Lett.

S. Woutersen and H. J. Bakker, Phys. Rev. Lett. 96, 138305 (2006).
[CrossRef]

K. J. Tielrooij, R. L. A. Timmer, H. J. Bakker, and M. Bonn, Phys. Rev. Lett. 102, 198303 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. USA

C. M. Phillips, Y. Mizutani, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 92, 7292 (1995).
[CrossRef]

Science

C.-Y. Ruan, V. A. Lobastov, F. Vigliotti, S. Chen, and A. H. Zewail, Science 304, 80 (2004).
[CrossRef]

Other

We measured the transmission of the IR and the THz beam through pinholes of different sizes. The IR beam is transmitted completely by a 500 μm pinhole and partially blocked by a 400 μm pinhole. The THz beam is transmitted by 10% by the 500 μm pinhole. Therefore, we estimate that 10% of the THz beam overlaps with the IR beam, thus arriving at a scaling factor of 0.1.

L. Piatkowski, “Water interacting with interfaces, ions and itself,” Ph.D. thesis (University of Amsterdam, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Intramolecular vibrational stretch mode is excited with resonant IR light pulses. Energy relaxation and redistribution leads to the thermal excitation of low-frequency modes, i.e., a higher temperature of the aqueous solution. The THz probe pulses are sensitive to this temperature change, as the higher temperature leads to an acceleration of the reorientation and thus to an increased absorption of the corresponding Debye relaxation mode at THz frequencies [9,10]. The water absorption spectrum data are from [11].

Fig. 2.
Fig. 2.

(a) Schematic representation of the experimental setup: IR pump pulses excite a vibrational stretch mode and—after a tunable delay—THz probe pulses interrogate the sample. (b) Vibrational relaxation of the excited vibrational stretch mode and subsequent thermalization lead to a change in the THz electric field sent through the sample (pure D2O), as shown by the differential pump–probe signal (ΔETHz). For comparison, also the transmitted THz electric field without pump-excitation (ETHz) is shown. (c) From the IR-induced change in the transmitted THz pulse profile, we calculate the change in complex permittivity, as shown by the markers. The lines correspond to the theoretical prediction of the change in permittivity using the energy density dissipated by an IR pump pulse and the temperature-dependent permittivity.

Fig. 3.
Fig. 3.

Thermalization dynamics. Differential THz signal ΔETHz as a function of time after excitation at t=0 with an IR pulse for pure H2O (a), 10mol/kg LiI in H2O (b), 5mol/l HCl solution [(c) and (d)], pure D2O (e), and 25% D2O in H2O (f). The pure H2O and the LiI solution are pumped with an IR pulse centered at 3400cm1, resonant with the OH-stretch vibration. The HCl solution was pumped with an IR pulse centered at 3400 (c) and 2800cm1 (d), exciting the OH-stretch and the proton complex, respectively. The solutions with D2O were excited with an IR pulse centered at 2550cm1, resonant with the OD-stretch mode. The blue dots are the experimental data, while the thick red lines are fits with a cascading model with the two time constants given in Table 1. In panel (a) in gray the THz response of a Germanium plate after excitation with an IR pulse is shown, illustrating the time resolution of the experiment.

Tables (1)

Tables Icon

Table 1. Fit Parameters

Metrics