Abstract

This Letter, describes a fabrication method based on a high refractive index binary phase mask combined with a suitable illumination setup, which produces a close to normal incidence illumination, to fabricate sub-micrometer diffraction gratings. The method uses the i-line (365 nm) of a mercury lamp spectrum in a mask-aligner in proximity mode, to avoid any contact between the mask and the wafer, which is normally used to produce high resolution structures. The transfer of the structure in a fused silica wafer demonstrates that mask-aligner lithography can produce high aspect ratio sub-wavelength structures without resorting to any contact between mask and wafer.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
    [CrossRef]
  2. M. Ahn, R. K. Heilmann, and M. L. Schattenburg, J. Vac. Sci. Technol. B 26, 2179 (2008).
    [CrossRef]
  3. Y. M. Song, J. S. Yu, and Y. T. Lee, Opt. Lett. 35, 276 (2010).
    [CrossRef]
  4. Y. Ye, Y. Zhou, and L. Chen, Appl. Opt. 48, 5035 (2009).
    [CrossRef]
  5. L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, Appl. Phys. Lett. 90, 063111 (2007).
    [CrossRef]
  6. T. Weber, T. Käsebier, E.-B. Kley, and A. Tünnermann, Opt. Lett. 36, 445 (2011).
    [CrossRef]
  7. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
    [CrossRef]
  8. P. I. Jensen and A. Sudbo, IEEE Photon. Technol. Lett. 7, 783 (1995).
    [CrossRef]
  9. Y. Bourgin, Y. Jourlin, O. Parriaux, A. Talneau, S. Tonchev, C. Veillas, P. Karvinen, N. Passilly, A. R. Md Zain, R. M. De La Rue, J. Van Erps, and D. Troadec, Opt. Express 18, 10557 (2010).
    [CrossRef]
  10. E. Gamet, A. V. Tishchenko, and O. Parriaux, Appl. Opt. 46, 6719 (2007).
    [CrossRef]
  11. P. Laakkonen, M. Kuittinen, and J. Turunen, Opt. Commun. 192, 153 (2001).
    [CrossRef]
  12. R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, Opt. Express 18, 20968 (2010).
    [CrossRef]

2011

2010

2009

2008

M. Ahn, R. K. Heilmann, and M. L. Schattenburg, J. Vac. Sci. Technol. B 26, 2179 (2008).
[CrossRef]

2007

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

E. Gamet, A. V. Tishchenko, and O. Parriaux, Appl. Opt. 46, 6719 (2007).
[CrossRef]

2001

P. Laakkonen, M. Kuittinen, and J. Turunen, Opt. Commun. 192, 153 (2001).
[CrossRef]

1995

P. I. Jensen and A. Sudbo, IEEE Photon. Technol. Lett. 7, 783 (1995).
[CrossRef]

1993

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

1985

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

Ahn, M.

M. Ahn, R. K. Heilmann, and M. L. Schattenburg, J. Vac. Sci. Technol. B 26, 2179 (2008).
[CrossRef]

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Bich, A.

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Bourgin, Y.

Buonanno, M.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

Chen, L.

Y. Ye, Y. Zhou, and L. Chen, Appl. Opt. 48, 5035 (2009).
[CrossRef]

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

Cullmann, E.

De La Rue, R. M.

Deng, X.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

Gamet, E.

Harzendorf, T.

Heilmann, R. K.

M. Ahn, R. K. Heilmann, and M. L. Schattenburg, J. Vac. Sci. Technol. B 26, 2179 (2008).
[CrossRef]

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Hornung, M.

Jensen, P. I.

P. I. Jensen and A. Sudbo, IEEE Photon. Technol. Lett. 7, 783 (1995).
[CrossRef]

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Jourlin, Y.

Karvinen, P.

Käsebier, T.

Kley, E.-B.

Kuittinen, M.

P. Laakkonen, M. Kuittinen, and J. Turunen, Opt. Commun. 192, 153 (2001).
[CrossRef]

Laakkonen, P.

P. Laakkonen, M. Kuittinen, and J. Turunen, Opt. Commun. 192, 153 (2001).
[CrossRef]

Lee, Y. T.

Liu, X.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Md Zain, A. R.

Mourou, G.

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

Parriaux, O.

Passilly, N.

Pernet, P.

Schattenburg, M. L.

M. Ahn, R. K. Heilmann, and M. L. Schattenburg, J. Vac. Sci. Technol. B 26, 2179 (2008).
[CrossRef]

Song, Y. M.

Strickland, D.

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

Stuerzebecher, L.

Sudbo, A.

P. I. Jensen and A. Sudbo, IEEE Photon. Technol. Lett. 7, 783 (1995).
[CrossRef]

Tai, S.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

Talneau, A.

Tishchenko, A. V.

Tonchev, S.

Troadec, D.

Tünnermann, A.

Turunen, J.

P. Laakkonen, M. Kuittinen, and J. Turunen, Opt. Commun. 192, 153 (2001).
[CrossRef]

Van Erps, J.

Veillas, C.

Voelkel, R.

Vogler, U.

Walters, F.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

Wang, J. J.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

Weber, T.

Weible, K. J.

Ye, Y.

Yu, J. S.

Zeitner, U. D.

Zhou, Y.

Zoberbier, R.

Appl. Opt.

Appl. Phys. Lett.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

P. I. Jensen and A. Sudbo, IEEE Photon. Technol. Lett. 7, 783 (1995).
[CrossRef]

J. Vac. Sci. Technol. B

M. Ahn, R. K. Heilmann, and M. L. Schattenburg, J. Vac. Sci. Technol. B 26, 2179 (2008).
[CrossRef]

Opt. Commun.

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

P. Laakkonen, M. Kuittinen, and J. Turunen, Opt. Commun. 192, 153 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Distribution of the optical intensity behind the phase mask. Left: with a monolithic fused silica mask. Right: with a high refractive index material corrugation. Both pictures include a sub-window displaying the distribution of the intensity, showing a strong contrast between two adjacent maxima in the case of the 0th order not being sufficiently canceled.

Fig. 2.
Fig. 2.

Scanning electron microscopy–focused ion beam (SEM-FIB) micrograph of the high refractive index phase mask.

Fig. 3.
Fig. 3.

Simplified sketch of the modified illumination system of the mask-aligner. The iris aperture placed before the second Köhler integrator reduced the set of angle on the mask plane.

Fig. 4.
Fig. 4.

SEM picture of a 250 nm period grating in AZ nLof_2070 photoresist on a SiO2 and chromium coated substrate written by proximity mask-aligner lithography.

Fig. 5.
Fig. 5.

SEM-FIB picture of the 250 nm period grating transferred in the SiO2 substrate by RIE. Bottom-right: high resolution structures with an aspect ratio of 12, achieved after using the whole chromium mask for etching.

Tables (2)

Tables Icon

Table 1. Specifications of Optimal Monolithic Fused Silica Phase Mask and Expected Diffractive Order Efficiencies

Tables Icon

Table 2. Specifications of Optimal Silicon Nitride-Based Phase Mask and Expected Diffractive Order Efficiencies

Metrics