Abstract

The method for estimating the gain coefficient spectrum of an erbium-doped fiber (EDF) is proposed and demonstrated experimentally. The method employs a net gain–loss measurement that uses the I413/2 level pumping of the EDF and the McCumber relation. A formula used to obtain the quotient of the gain and loss coefficient from the net gain–loss measurement is derived to determine the parameter in the McCumber relation. It is confirmed that the gain coefficient spectrum of an EDF estimated with the method coincides with the value estimated using a conventional net gain–loss measurement that employs the I411/2 level pumping. The method is successfully applied to an erbium/ytterbium-doped fiber, for which it is impossible to perform a conventional net gain–loss measurement with pumping at the I411/2 level of erbium ions because of the absorption transition of ytterbium ions from F27/2 to F25/2 levels.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Richardson, Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTu3G.1.
  2. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, Opt. Express 13, 4916 (2005).
    [CrossRef]
  3. H. Ono, K. Takenaga, K. Ichii, S. Matsuo, T. Takahashi, H. Masuda, and M. Yamada, European Conference on Optical Communication, (2013), paper We.4.A.4.
  4. W. J. Miniscalco and R. S. Quimby, Opt. Lett. 16, 258 (1991).
    [CrossRef]
  5. W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, J. Quantum Electron. 27, 1004 (1991).
    [CrossRef]
  6. H. Zech, IEEE Photon. Technol. Lett. 7, 986 (1995).
    [CrossRef]
  7. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers (Academic, 1997).

2005 (1)

1995 (1)

H. Zech, IEEE Photon. Technol. Lett. 7, 986 (1995).
[CrossRef]

1991 (2)

W. J. Miniscalco and R. S. Quimby, Opt. Lett. 16, 258 (1991).
[CrossRef]

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, J. Quantum Electron. 27, 1004 (1991).
[CrossRef]

Barnes, W. L.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, J. Quantum Electron. 27, 1004 (1991).
[CrossRef]

Becker, P. C.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers (Academic, 1997).

Clarkson, W. A.

Ichii, K.

H. Ono, K. Takenaga, K. Ichii, S. Matsuo, T. Takahashi, H. Masuda, and M. Yamada, European Conference on Optical Communication, (2013), paper We.4.A.4.

Laming, R. I.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, J. Quantum Electron. 27, 1004 (1991).
[CrossRef]

Masuda, H.

H. Ono, K. Takenaga, K. Ichii, S. Matsuo, T. Takahashi, H. Masuda, and M. Yamada, European Conference on Optical Communication, (2013), paper We.4.A.4.

Matsuo, S.

H. Ono, K. Takenaga, K. Ichii, S. Matsuo, T. Takahashi, H. Masuda, and M. Yamada, European Conference on Optical Communication, (2013), paper We.4.A.4.

Miniscalco, W. J.

Morkel, P. R.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, J. Quantum Electron. 27, 1004 (1991).
[CrossRef]

Olsson, N. A.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers (Academic, 1997).

Ono, H.

H. Ono, K. Takenaga, K. Ichii, S. Matsuo, T. Takahashi, H. Masuda, and M. Yamada, European Conference on Optical Communication, (2013), paper We.4.A.4.

Quimby, R. S.

Richardson, D.

D. Richardson, Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTu3G.1.

Sahu, J. K.

Shen, D. Y.

Simpson, J. R.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers (Academic, 1997).

Takahashi, T.

H. Ono, K. Takenaga, K. Ichii, S. Matsuo, T. Takahashi, H. Masuda, and M. Yamada, European Conference on Optical Communication, (2013), paper We.4.A.4.

Takenaga, K.

H. Ono, K. Takenaga, K. Ichii, S. Matsuo, T. Takahashi, H. Masuda, and M. Yamada, European Conference on Optical Communication, (2013), paper We.4.A.4.

Tarbox, E. J.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, J. Quantum Electron. 27, 1004 (1991).
[CrossRef]

Yamada, M.

H. Ono, K. Takenaga, K. Ichii, S. Matsuo, T. Takahashi, H. Masuda, and M. Yamada, European Conference on Optical Communication, (2013), paper We.4.A.4.

Zech, H.

H. Zech, IEEE Photon. Technol. Lett. 7, 986 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Zech, IEEE Photon. Technol. Lett. 7, 986 (1995).
[CrossRef]

J. Quantum Electron. (1)

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, J. Quantum Electron. 27, 1004 (1991).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (3)

D. Richardson, Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTu3G.1.

H. Ono, K. Takenaga, K. Ichii, S. Matsuo, T. Takahashi, H. Masuda, and M. Yamada, European Conference on Optical Communication, (2013), paper We.4.A.4.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers (Academic, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Setup for the net gain–loss measurement.

Fig. 2.
Fig. 2.

Measured R dependence of the gain and the estimated GdBmax for the EDF.

Fig. 3.
Fig. 3.

Gain coefficient spectra obtained from net gain–loss measurement with I411/2 and I413/2 pumping, and the loss coefficient spectrum for EDF.

Fig. 4.
Fig. 4.

Measured R dependence of the gain and the estimated GdBmax for the EYDF.

Fig. 5.
Fig. 5.

Gain coefficient spectra obtained from net gain–loss measurement with I413/2 pumping, and the loss coefficient spectrum for EYDF.

Fig. 6.
Fig. 6.

Calculated and measured gain spectra of the EYDF for 8-channel WDM signals.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

g*(ν)=α(ν)exp[(ϵhν)/kT],
N1=R21+A21R12+R21+A21,N2=R12R12+R21+A21,
G(νs)=exp[(g*(νs)N2α(νs)N1)L].
g*(νs)N2α(νs)N1=R12g*(νs)R21α(νs)A21α(νs)R12+R21+A21.
ξp,s=1η(νp)/η(νs)1+η(νp),
g*(νs)N2α(νs)N1=(R12+R21)g*(νs)ξp,sA21α(νs)(R12+R21)+A21.
R12=Γ(νp)σa(νp)hνpSP(νp),
R21=Γ(νp)σe(νp)hνpSP(νp),
R=(σa(νp)+σe(νp))P(νp)(σa(νp)+σe(νp))Pth(νp)=P(νp)Pth(νp).
g*(νs)N2α(νs)N1=ξp,sg*(νs)R1R+ξp,sη(νs).
GdB=GdBmax(νs)ξp,sR1R+ξp,sη(νs),
GdBmax(νs)=(10loge)g*(νs)L.
ϵ=hνs+kTln(η(νs)),

Metrics