Abstract

The generation of flat, rectangular frequency combs with tunable frequency spacing and bandwidth is demonstrated. Therefore, several lines or sidebands are extracted out of an existing frequency comb, for example a femtosecond fiber laser. Subsequently, these lines are processed via two Mach–Zehnder modulators in order to generate a flat frequency comb with tunable frequency spacing. Optical frequency combs with various spacing and a maximum bandwidth of 260 GHz are generated. However, much higher bandwidth can be reached easily. The overall flatness of the generated combs is within 0.6 dB.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ye, H. Schnatz, and L. W. Hollberg, IEEE J. Sel Top. Quantum Electron 9, 1041 (2003).
    [CrossRef]
  2. M. Takamoto, F. Hong, R. Higashi, and H. Katori, Nature 435, 321 (2005).
    [CrossRef]
  3. S. Preußler, K. Jamshidi, A. Wiatrek, R. Henker, C. A. Bunge, and T. Schneider, Opt. Express 17, 15790 (2009).
    [CrossRef]
  4. T. Schneider, K. Jamshidi, and S. Preußler, J. Lightwave Technol. 28, 2586 (2010).
    [CrossRef]
  5. M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brés, L. Thévenaz, and T. Schneider, Nat. Commun. 4, 2898 (2013).
    [CrossRef]
  6. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photonics 6, 186 (2012).
    [CrossRef]
  7. M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 23, 1618 (2011).
    [CrossRef]
  8. E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microw. Theory Tech. 58, 3269 (2010).
    [CrossRef]
  9. H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
    [CrossRef]
  10. T. Sakamoto, T. Kawanishi, and M. Izutsu, in Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2007), pp. 50–53.
  11. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, Opt. Lett. 35, 3234 (2010).
    [CrossRef]
  12. S. Preußler, N. Wenzel, R. P. Braun, N. Owschimikow, C. Vogel, A. Deninger, A. Zadok, U. Woggon, and T. Schneider, Opt. Express 21, 23950 (2013).
    [CrossRef]
  13. S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, Opt. Express 19, 8565 (2011).
    [CrossRef]
  14. S. Preußler and T. Schneider, Opt. Lett. 37, 4122 (2012).
    [CrossRef]
  15. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, Opt. Express 16, 21692 (2008).
    [CrossRef]
  16. A. Wise, M. Tur, and A. Zadok, Opt. Express 19, 21945 (2011).
    [CrossRef]
  17. S. Preussler, A. Zadok, A. Wiatrek, M. Tur, and T. Schneider, Opt. Express 20, 14734 (2012).
    [CrossRef]

2013

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brés, L. Thévenaz, and T. Schneider, Nat. Commun. 4, 2898 (2013).
[CrossRef]

S. Preußler, N. Wenzel, R. P. Braun, N. Owschimikow, C. Vogel, A. Deninger, A. Zadok, U. Woggon, and T. Schneider, Opt. Express 21, 23950 (2013).
[CrossRef]

2012

S. Preußler and T. Schneider, Opt. Lett. 37, 4122 (2012).
[CrossRef]

S. Preussler, A. Zadok, A. Wiatrek, M. Tur, and T. Schneider, Opt. Express 20, 14734 (2012).
[CrossRef]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photonics 6, 186 (2012).
[CrossRef]

2011

2010

2009

2008

2005

M. Takamoto, F. Hong, R. Higashi, and H. Katori, Nature 435, 321 (2005).
[CrossRef]

2003

J. Ye, H. Schnatz, and L. W. Hollberg, IEEE J. Sel Top. Quantum Electron 9, 1041 (2003).
[CrossRef]

2000

H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[CrossRef]

Alem, M.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brés, L. Thévenaz, and T. Schneider, Nat. Commun. 4, 2898 (2013).
[CrossRef]

Braun, R. P.

Brés, C. S.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brés, L. Thévenaz, and T. Schneider, Nat. Commun. 4, 2898 (2013).
[CrossRef]

Bunge, C. A.

Deninger, A.

Eyal, A.

Ferdous, F.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photonics 6, 186 (2012).
[CrossRef]

Hamidi, E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photonics 6, 186 (2012).
[CrossRef]

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microw. Theory Tech. 58, 3269 (2010).
[CrossRef]

Haus, H. A.

H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[CrossRef]

Henker, R.

Higashi, R.

M. Takamoto, F. Hong, R. Higashi, and H. Katori, Nature 435, 321 (2005).
[CrossRef]

Hollberg, L. W.

J. Ye, H. Schnatz, and L. W. Hollberg, IEEE J. Sel Top. Quantum Electron 9, 1041 (2003).
[CrossRef]

Hong, F.

M. Takamoto, F. Hong, R. Higashi, and H. Katori, Nature 435, 321 (2005).
[CrossRef]

Izutsu, M.

T. Sakamoto, T. Kawanishi, and M. Izutsu, in Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2007), pp. 50–53.

Jamshidi, K.

Katori, H.

M. Takamoto, F. Hong, R. Higashi, and H. Katori, Nature 435, 321 (2005).
[CrossRef]

Kawanishi, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, in Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2007), pp. 50–53.

Leaird, D. E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photonics 6, 186 (2012).
[CrossRef]

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 23, 1618 (2011).
[CrossRef]

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microw. Theory Tech. 58, 3269 (2010).
[CrossRef]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, Opt. Lett. 35, 3234 (2010).
[CrossRef]

Long, C. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photonics 6, 186 (2012).
[CrossRef]

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 23, 1618 (2011).
[CrossRef]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, Opt. Lett. 35, 3234 (2010).
[CrossRef]

Owschimikow, N.

Preußler, S.

Preussler, S.

Preußler, S.

Sakamoto, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, in Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2007), pp. 50–53.

Schnatz, H.

J. Ye, H. Schnatz, and L. W. Hollberg, IEEE J. Sel Top. Quantum Electron 9, 1041 (2003).
[CrossRef]

Schneider, T.

Seo, D.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 23, 1618 (2011).
[CrossRef]

Shoaie, M. A.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brés, L. Thévenaz, and T. Schneider, Nat. Commun. 4, 2898 (2013).
[CrossRef]

Song, M.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 23, 1618 (2011).
[CrossRef]

Soto, M. A.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brés, L. Thévenaz, and T. Schneider, Nat. Commun. 4, 2898 (2013).
[CrossRef]

Supradeepa, V. R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photonics 6, 186 (2012).
[CrossRef]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, Opt. Lett. 35, 3234 (2010).
[CrossRef]

Takamoto, M.

M. Takamoto, F. Hong, R. Higashi, and H. Katori, Nature 435, 321 (2005).
[CrossRef]

Thévenaz, L.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brés, L. Thévenaz, and T. Schneider, Nat. Commun. 4, 2898 (2013).
[CrossRef]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, Opt. Express 16, 21692 (2008).
[CrossRef]

Tur, M.

Vedadi, A.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brés, L. Thévenaz, and T. Schneider, Nat. Commun. 4, 2898 (2013).
[CrossRef]

Vogel, C.

Weiner, A. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photonics 6, 186 (2012).
[CrossRef]

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 23, 1618 (2011).
[CrossRef]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, Opt. Lett. 35, 3234 (2010).
[CrossRef]

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microw. Theory Tech. 58, 3269 (2010).
[CrossRef]

Wenzel, N.

Wiatrek, A.

Wise, A.

Woggon, U.

Wu, R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photonics 6, 186 (2012).
[CrossRef]

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 23, 1618 (2011).
[CrossRef]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, Opt. Lett. 35, 3234 (2010).
[CrossRef]

Ye, J.

J. Ye, H. Schnatz, and L. W. Hollberg, IEEE J. Sel Top. Quantum Electron 9, 1041 (2003).
[CrossRef]

Zadok, A.

Zilka, E.

IEEE J. Sel Top. Quantum Electron

J. Ye, H. Schnatz, and L. W. Hollberg, IEEE J. Sel Top. Quantum Electron 9, 1041 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 23, 1618 (2011).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microw. Theory Tech. 58, 3269 (2010).
[CrossRef]

J. Lightwave Technol.

Nat. Commun.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brés, L. Thévenaz, and T. Schneider, Nat. Commun. 4, 2898 (2013).
[CrossRef]

Nat. Photonics

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photonics 6, 186 (2012).
[CrossRef]

Nature

M. Takamoto, F. Hong, R. Higashi, and H. Katori, Nature 435, 321 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Other

T. Sakamoto, T. Kawanishi, and M. Izutsu, in Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2007), pp. 50–53.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Basic concept for frequency comb generation (a). (b) Output spectrum of the source and the frequency extraction. (c) Afterward the extracted frequencies are processed with two MZMs and generate a flat frequency comb.

Fig. 2.
Fig. 2.

Experimental setup for the frequency comb generation. (WS, wave shaper; PC, polarization controller; EDFA, erbium-doped fiber amplifier; LD, distributed feedback laser diode; MZM, Mach–Zehnder modulator; PD, photodiode; Calc, calculation of frequencies; OSA, optical spectrum analyzer.)

Fig. 3.
Fig. 3.

Generated frequency comb from two extracted lines and two modulators. The comb consists of 18 lines with a spacing of 10 GHz. The inset shows the generated pulses.

Fig. 4.
Fig. 4.

Generated frequency comb from three extracted lines and two modulators. The comb consists of 27 lines with a spacing of 10 GHz.

Fig. 5.
Fig. 5.

Generated frequency comb from two extracted lines and two modulators. The comb consists of 18 lines with a spacing of 3 GHz.

Metrics