Abstract

The versatile control of graphene’s plasmonic modes via an external gate-voltage inspires us to design efficient electro-optical graphene plasmonic logic gates at the midinfrared wavelengths. We show that these devices are superior to the conventional optical logic gates because the former possess cut-off states and interferometric effects. Moreover, the designed six basic logic gates (i.e., NOR/AND, NAND/OR, XNOR/XOR) achieved not only ultracompact size lengths of less than λ/28 with respect to the operating wavelength of 10 μm, but also a minimum extinction ratio as high as 15 dB. These graphene plasmonic logic gates are potential building blocks for future nanoscale midinfrared photonic integrated circuits.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, Nat. Photonics 4, 495 (2010).
    [CrossRef]
  2. R. Standley, Nat. Photonics 6, 409 (2012).
    [CrossRef]
  3. J. Hardy and J. Shamir, Opt. Express 15, 150 (2007).
    [CrossRef]
  4. C. Reis, T. Chattopadhyay, P. André, and A. Teixeira, Appl. Opt. 51, 8693 (2012).
    [CrossRef]
  5. D. Pan, H. Wei, and H. Xu, Opt. Express 21, 9556 (2013).
    [CrossRef]
  6. L. Zhang, R. Ji, L. Jia, L. Yang, P. Zhou, Y. Tian, P. Chen, Y. Lu, Z. Jiang, Y. Liu, Q. Fang, and M. Yu, Opt. Lett. 35, 1620 (2010).
    [CrossRef]
  7. Q. Xu and R. Soref, Opt. Express 19, 5244 (2011).
    [CrossRef]
  8. L. Zhang, J. Ding, Y. Tian, R. Ji, L. Yang, H. Chen, P. Zhou, Y. Lu, W. Zhu, and R. Min, Opt. Express 20, 11605 (2012).
    [CrossRef]
  9. C. Qiu, X. Ye, R. Soref, L. Yang, and Q. Xu, Opt. Lett. 37, 3942 (2012).
    [CrossRef]
  10. Y. Tian, L. Zhang, and L. Yang, Opt. Express 20, 16794 (2012).
    [CrossRef]
  11. M. Jablan, H. Buljan, and M. Soljačić, Phys. Rev. B 80, 245435 (2009).
    [CrossRef]
  12. K. J. A. Ooi, H. S. Chu, L. K. Ang, and P. Bai, J. Opt. Soc. Am. B 30, 3111 (2013).
    [CrossRef]
  13. R. Hao, W. Du, H. Chen, X. Jin, L. Yang, and E. P. Li, Appl. Phys. Lett. 103, 061116 (2013).
    [CrossRef]
  14. X. He and S. Kim, J. Opt. Soc. Am. B 30, 2461 (2013).
    [CrossRef]
  15. B. Wang, X. Zhang, X. Yuan, and J. Teng, Appl. Phys. Lett. 100, 131111 (2012).
    [CrossRef]
  16. D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, Adv. Phys. 59, 261 (2010).
    [CrossRef]
  17. C. S. T. Microwave Studio, ( www.cst.com ).
  18. B. Wang and G. P. Wang, Opt. Lett. 29, 1992 (2004).
    [CrossRef]
  19. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, 1984).

2013

2012

2011

2010

L. Zhang, R. Ji, L. Jia, L. Yang, P. Zhou, Y. Tian, P. Chen, Y. Lu, Z. Jiang, Y. Liu, Q. Fang, and M. Yu, Opt. Lett. 35, 1620 (2010).
[CrossRef]

R. Soref, Nat. Photonics 4, 495 (2010).
[CrossRef]

D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, Adv. Phys. 59, 261 (2010).
[CrossRef]

2009

M. Jablan, H. Buljan, and M. Soljačić, Phys. Rev. B 80, 245435 (2009).
[CrossRef]

2007

2004

Abergel, D. S. L.

D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, Adv. Phys. 59, 261 (2010).
[CrossRef]

André, P.

Ang, L. K.

Apalkov, V.

D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, Adv. Phys. 59, 261 (2010).
[CrossRef]

Bai, P.

Berashevich, J.

D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, Adv. Phys. 59, 261 (2010).
[CrossRef]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljačić, Phys. Rev. B 80, 245435 (2009).
[CrossRef]

Chakraborty, T.

D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, Adv. Phys. 59, 261 (2010).
[CrossRef]

Chattopadhyay, T.

Chen, H.

R. Hao, W. Du, H. Chen, X. Jin, L. Yang, and E. P. Li, Appl. Phys. Lett. 103, 061116 (2013).
[CrossRef]

L. Zhang, J. Ding, Y. Tian, R. Ji, L. Yang, H. Chen, P. Zhou, Y. Lu, W. Zhu, and R. Min, Opt. Express 20, 11605 (2012).
[CrossRef]

Chen, P.

Chu, H. S.

Ding, J.

Du, W.

R. Hao, W. Du, H. Chen, X. Jin, L. Yang, and E. P. Li, Appl. Phys. Lett. 103, 061116 (2013).
[CrossRef]

Fang, Q.

Hao, R.

R. Hao, W. Du, H. Chen, X. Jin, L. Yang, and E. P. Li, Appl. Phys. Lett. 103, 061116 (2013).
[CrossRef]

Hardy, J.

He, X.

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, 1984).

Jablan, M.

M. Jablan, H. Buljan, and M. Soljačić, Phys. Rev. B 80, 245435 (2009).
[CrossRef]

Ji, R.

Jia, L.

Jiang, Z.

Jin, X.

R. Hao, W. Du, H. Chen, X. Jin, L. Yang, and E. P. Li, Appl. Phys. Lett. 103, 061116 (2013).
[CrossRef]

Kim, S.

Li, E. P.

R. Hao, W. Du, H. Chen, X. Jin, L. Yang, and E. P. Li, Appl. Phys. Lett. 103, 061116 (2013).
[CrossRef]

Liu, Y.

Lu, Y.

Min, R.

Ooi, K. J. A.

Pan, D.

Qiu, C.

Reis, C.

Shamir, J.

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljačić, Phys. Rev. B 80, 245435 (2009).
[CrossRef]

Soref, R.

Standley, R.

R. Standley, Nat. Photonics 6, 409 (2012).
[CrossRef]

Teixeira, A.

Teng, J.

B. Wang, X. Zhang, X. Yuan, and J. Teng, Appl. Phys. Lett. 100, 131111 (2012).
[CrossRef]

Tian, Y.

Wang, B.

B. Wang, X. Zhang, X. Yuan, and J. Teng, Appl. Phys. Lett. 100, 131111 (2012).
[CrossRef]

B. Wang and G. P. Wang, Opt. Lett. 29, 1992 (2004).
[CrossRef]

Wang, G. P.

Wei, H.

Xu, H.

Xu, Q.

Yang, L.

Ye, X.

Yu, M.

Yuan, X.

B. Wang, X. Zhang, X. Yuan, and J. Teng, Appl. Phys. Lett. 100, 131111 (2012).
[CrossRef]

Zhang, L.

Zhang, X.

B. Wang, X. Zhang, X. Yuan, and J. Teng, Appl. Phys. Lett. 100, 131111 (2012).
[CrossRef]

Zhou, P.

Zhu, W.

Ziegler, K.

D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, Adv. Phys. 59, 261 (2010).
[CrossRef]

Adv. Phys.

D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, Adv. Phys. 59, 261 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

R. Hao, W. Du, H. Chen, X. Jin, L. Yang, and E. P. Li, Appl. Phys. Lett. 103, 061116 (2013).
[CrossRef]

B. Wang, X. Zhang, X. Yuan, and J. Teng, Appl. Phys. Lett. 100, 131111 (2012).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Photonics

R. Soref, Nat. Photonics 4, 495 (2010).
[CrossRef]

R. Standley, Nat. Photonics 6, 409 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

M. Jablan, H. Buljan, and M. Soljačić, Phys. Rev. B 80, 245435 (2009).
[CrossRef]

Other

C. S. T. Microwave Studio, ( www.cst.com ).

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Symmetric (β+) and antisymmetric (β) graphene plasmon modes, and coupling coefficient Cg between two graphene nanoribbons as a function of the spatial separation t. Inset: electric-field plots of the symmetric and antisymmetric graphene plasmon modes.

Fig. 2.
Fig. 2.

Basic switching unit of the graphene plasmonic MZI logic gate.

Fig. 3.
Fig. 3.

Logic gate configuration for (a) NOR/AND, (b) NAND/OR, and (c) XNOR/XOR logics.

Fig. 4.
Fig. 4.

Electric-field profiles for various graphene plasmonic logic gates and input logics. NOR gate under (a) 00, (b) 01&10, and (c) 11 input logic. NAND gate under (d) 00, (e) 01&10, and (f) 11 input logic. XNOR gate under (g) 00, (h) 01&10, and (i) 11 input logic.

Fig. 5.
Fig. 5.

Frequency response for the XNOR/XOR logic gate in the off-state.

Tables (1)

Tables Icon

Table 1. Truth Table and Corresponding Extinction (dB) for Graphene Plasmonic MZI Logic Gates

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Cg=|ββ+2|.
Lc=(m+12)(π/2Cg)m=0,1,2,,
Cg22=Cg2+(β0β1,22)2,
Lg+2Lcmπ/|k1k2|m=1,2,3,,

Metrics