Abstract

The gain-transparent stimulated Brillouin scattering (SBS) process has been successfully applied to dual-orthogonal-pump four-wave mixing (FWM) to enhance the performance of polarization-insensitive wavelength conversion. The Brillouin pump and Stokes waves control the optical phase of one of the FWM pumps to achieve phase matching to extend the wavelength conversion range. The experimental data show that the polarization-insensitive property is well preserved under gain-transparent SBS processing, and only 0.5 dB output power variation is observed in the converted idler. A 5.1 dB enhancement of the conversion efficiency is obtained through the phase control at large signal-pump spectral spacing. By applying this scheme for exclusive phase control, simultaneous polarization-insensitive and wideband wavelength conversion can be potentially realized in other configurations using two copolarized pumps or a polarization diversity loop.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Hu, E. Palushani, M. Galili, H. C. H. Mulvad, A. Clausen, L. K. Oxenløwe, and P. Jeppesen, Opt. Express 18, 9961 (2010).
    [CrossRef]
  2. T. Hasegawa, K. Inoue, and K. Oda, IEEE Photon. Technol. Lett. 5, 947 (1993).
    [CrossRef]
  3. T. Yang, C. Shu, and C. Lin, Opt. Express 13, 5409 (2005).
    [CrossRef]
  4. W. Astar, A. S. Lenihan, and G. M. Carter, IEEE Photon. Technol. Lett. 19, 1676 (2007).
    [CrossRef]
  5. Y. Dai and C. Shu, IEEE Photon. Technol. Lett. 22, 1138 (2010).
    [CrossRef]
  6. J. Ma, J. Yu, C. Yu, Z. Jia, X. Sang, Z. Zhou, T. Wang, and G. K. Chang, J. Lightw. Technol. 24, 2851 (2006).
    [CrossRef]
  7. X. Li, J. Yu, Z. Dong, and N. Chi, Opt. Express 20, 21324 (2012).
    [CrossRef]
  8. K. Inoue, J. Lightwave Technol. 12, 1916 (1994).
    [CrossRef]
  9. Z. Dong, J. Yu, H. C. Chien, L. Chen, and G. K. Chang, in Proc. of ECOC (IEEE, 2011), paper Th.11.LeSaleve.5.
  10. K. Inoue, J. Lightw. Technol. 10, 1553 (1992).
    [CrossRef]
  11. T. Okuno, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, Electron. Lett. 39, 972 (2003).
    [CrossRef]
  12. M. P. Fok, C. Shu, and D. J. Blumenthal, in Proc. OFC/NFOEC (IEEE, 2007), paper JThA52.
  13. E. Mateo, F. Yaman, and G. Li, Opt. Lett. 33, 488 (2008).
    [CrossRef]
  14. L. Wang and C. Shu, in Photonics in Switching Conference (Optical Society of America, 2012), postdeadline paper 2.
  15. L. Wang and C. Shu, J. Lightw. Technol. 31, 1468 (2013).
    [CrossRef]
  16. A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006).
    [CrossRef]
  17. A. Bogris and D. Syvridis, J. Lightw. Technol. 21, 1892 (2003).
    [CrossRef]
  18. N. Shibata, R. P. Braun, and R. G. Waarts, IEEE J. Quantum Electron. 23, 1205 (1987).
    [CrossRef]
  19. K. Inoue, IEEE J. Quantum Electron. 28, 883 (1992).
    [CrossRef]

2013 (1)

L. Wang and C. Shu, J. Lightw. Technol. 31, 1468 (2013).
[CrossRef]

2012 (1)

2010 (2)

2008 (1)

2007 (1)

W. Astar, A. S. Lenihan, and G. M. Carter, IEEE Photon. Technol. Lett. 19, 1676 (2007).
[CrossRef]

2006 (2)

J. Ma, J. Yu, C. Yu, Z. Jia, X. Sang, Z. Zhou, T. Wang, and G. K. Chang, J. Lightw. Technol. 24, 2851 (2006).
[CrossRef]

A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006).
[CrossRef]

2005 (1)

2003 (2)

T. Okuno, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, Electron. Lett. 39, 972 (2003).
[CrossRef]

A. Bogris and D. Syvridis, J. Lightw. Technol. 21, 1892 (2003).
[CrossRef]

1994 (1)

K. Inoue, J. Lightwave Technol. 12, 1916 (1994).
[CrossRef]

1993 (1)

T. Hasegawa, K. Inoue, and K. Oda, IEEE Photon. Technol. Lett. 5, 947 (1993).
[CrossRef]

1992 (2)

K. Inoue, IEEE J. Quantum Electron. 28, 883 (1992).
[CrossRef]

K. Inoue, J. Lightw. Technol. 10, 1553 (1992).
[CrossRef]

1987 (1)

N. Shibata, R. P. Braun, and R. G. Waarts, IEEE J. Quantum Electron. 23, 1205 (1987).
[CrossRef]

Astar, W.

W. Astar, A. S. Lenihan, and G. M. Carter, IEEE Photon. Technol. Lett. 19, 1676 (2007).
[CrossRef]

Blumenthal, D. J.

M. P. Fok, C. Shu, and D. J. Blumenthal, in Proc. OFC/NFOEC (IEEE, 2007), paper JThA52.

Bogris, A.

A. Bogris and D. Syvridis, J. Lightw. Technol. 21, 1892 (2003).
[CrossRef]

Braun, R. P.

N. Shibata, R. P. Braun, and R. G. Waarts, IEEE J. Quantum Electron. 23, 1205 (1987).
[CrossRef]

Carter, G. M.

W. Astar, A. S. Lenihan, and G. M. Carter, IEEE Photon. Technol. Lett. 19, 1676 (2007).
[CrossRef]

Chang, G. K.

J. Ma, J. Yu, C. Yu, Z. Jia, X. Sang, Z. Zhou, T. Wang, and G. K. Chang, J. Lightw. Technol. 24, 2851 (2006).
[CrossRef]

Z. Dong, J. Yu, H. C. Chien, L. Chen, and G. K. Chang, in Proc. of ECOC (IEEE, 2011), paper Th.11.LeSaleve.5.

Chen, L.

Z. Dong, J. Yu, H. C. Chien, L. Chen, and G. K. Chang, in Proc. of ECOC (IEEE, 2011), paper Th.11.LeSaleve.5.

Chi, N.

Chien, H. C.

Z. Dong, J. Yu, H. C. Chien, L. Chen, and G. K. Chang, in Proc. of ECOC (IEEE, 2011), paper Th.11.LeSaleve.5.

Clausen, A.

Dai, Y.

Y. Dai and C. Shu, IEEE Photon. Technol. Lett. 22, 1138 (2010).
[CrossRef]

Dong, Z.

X. Li, J. Yu, Z. Dong, and N. Chi, Opt. Express 20, 21324 (2012).
[CrossRef]

Z. Dong, J. Yu, H. C. Chien, L. Chen, and G. K. Chang, in Proc. of ECOC (IEEE, 2011), paper Th.11.LeSaleve.5.

Fok, M. P.

M. P. Fok, C. Shu, and D. J. Blumenthal, in Proc. OFC/NFOEC (IEEE, 2007), paper JThA52.

Galili, M.

Hasegawa, T.

T. Hasegawa, K. Inoue, and K. Oda, IEEE Photon. Technol. Lett. 5, 947 (1993).
[CrossRef]

Hirano, M.

T. Okuno, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, Electron. Lett. 39, 972 (2003).
[CrossRef]

Hu, H.

Inoue, K.

K. Inoue, J. Lightwave Technol. 12, 1916 (1994).
[CrossRef]

T. Hasegawa, K. Inoue, and K. Oda, IEEE Photon. Technol. Lett. 5, 947 (1993).
[CrossRef]

K. Inoue, IEEE J. Quantum Electron. 28, 883 (1992).
[CrossRef]

K. Inoue, J. Lightw. Technol. 10, 1553 (1992).
[CrossRef]

Jeppesen, P.

Jia, Z.

J. Ma, J. Yu, C. Yu, Z. Jia, X. Sang, Z. Zhou, T. Wang, and G. K. Chang, J. Lightw. Technol. 24, 2851 (2006).
[CrossRef]

Kato, T.

T. Okuno, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, Electron. Lett. 39, 972 (2003).
[CrossRef]

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006).
[CrossRef]

Lenihan, A. S.

W. Astar, A. S. Lenihan, and G. M. Carter, IEEE Photon. Technol. Lett. 19, 1676 (2007).
[CrossRef]

Li, G.

Li, X.

Lin, C.

Loayssa, A.

A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006).
[CrossRef]

Ma, J.

J. Ma, J. Yu, C. Yu, Z. Jia, X. Sang, Z. Zhou, T. Wang, and G. K. Chang, J. Lightw. Technol. 24, 2851 (2006).
[CrossRef]

Mateo, E.

Mulvad, H. C. H.

Oda, K.

T. Hasegawa, K. Inoue, and K. Oda, IEEE Photon. Technol. Lett. 5, 947 (1993).
[CrossRef]

Okuno, T.

T. Okuno, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, Electron. Lett. 39, 972 (2003).
[CrossRef]

Onishi, M.

T. Okuno, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, Electron. Lett. 39, 972 (2003).
[CrossRef]

Oxenløwe, L. K.

Palushani, E.

Sang, X.

J. Ma, J. Yu, C. Yu, Z. Jia, X. Sang, Z. Zhou, T. Wang, and G. K. Chang, J. Lightw. Technol. 24, 2851 (2006).
[CrossRef]

Shibata, N.

N. Shibata, R. P. Braun, and R. G. Waarts, IEEE J. Quantum Electron. 23, 1205 (1987).
[CrossRef]

Shigematsu, M.

T. Okuno, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, Electron. Lett. 39, 972 (2003).
[CrossRef]

Shu, C.

L. Wang and C. Shu, J. Lightw. Technol. 31, 1468 (2013).
[CrossRef]

Y. Dai and C. Shu, IEEE Photon. Technol. Lett. 22, 1138 (2010).
[CrossRef]

T. Yang, C. Shu, and C. Lin, Opt. Express 13, 5409 (2005).
[CrossRef]

L. Wang and C. Shu, in Photonics in Switching Conference (Optical Society of America, 2012), postdeadline paper 2.

M. P. Fok, C. Shu, and D. J. Blumenthal, in Proc. OFC/NFOEC (IEEE, 2007), paper JThA52.

Syvridis, D.

A. Bogris and D. Syvridis, J. Lightw. Technol. 21, 1892 (2003).
[CrossRef]

Waarts, R. G.

N. Shibata, R. P. Braun, and R. G. Waarts, IEEE J. Quantum Electron. 23, 1205 (1987).
[CrossRef]

Wang, L.

L. Wang and C. Shu, J. Lightw. Technol. 31, 1468 (2013).
[CrossRef]

L. Wang and C. Shu, in Photonics in Switching Conference (Optical Society of America, 2012), postdeadline paper 2.

Wang, T.

J. Ma, J. Yu, C. Yu, Z. Jia, X. Sang, Z. Zhou, T. Wang, and G. K. Chang, J. Lightw. Technol. 24, 2851 (2006).
[CrossRef]

Yaman, F.

Yang, T.

Yu, C.

J. Ma, J. Yu, C. Yu, Z. Jia, X. Sang, Z. Zhou, T. Wang, and G. K. Chang, J. Lightw. Technol. 24, 2851 (2006).
[CrossRef]

Yu, J.

X. Li, J. Yu, Z. Dong, and N. Chi, Opt. Express 20, 21324 (2012).
[CrossRef]

J. Ma, J. Yu, C. Yu, Z. Jia, X. Sang, Z. Zhou, T. Wang, and G. K. Chang, J. Lightw. Technol. 24, 2851 (2006).
[CrossRef]

Z. Dong, J. Yu, H. C. Chien, L. Chen, and G. K. Chang, in Proc. of ECOC (IEEE, 2011), paper Th.11.LeSaleve.5.

Zhou, Z.

J. Ma, J. Yu, C. Yu, Z. Jia, X. Sang, Z. Zhou, T. Wang, and G. K. Chang, J. Lightw. Technol. 24, 2851 (2006).
[CrossRef]

Electron. Lett. (1)

T. Okuno, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, Electron. Lett. 39, 972 (2003).
[CrossRef]

IEEE J. Quantum Electron. (2)

N. Shibata, R. P. Braun, and R. G. Waarts, IEEE J. Quantum Electron. 23, 1205 (1987).
[CrossRef]

K. Inoue, IEEE J. Quantum Electron. 28, 883 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

T. Hasegawa, K. Inoue, and K. Oda, IEEE Photon. Technol. Lett. 5, 947 (1993).
[CrossRef]

A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006).
[CrossRef]

W. Astar, A. S. Lenihan, and G. M. Carter, IEEE Photon. Technol. Lett. 19, 1676 (2007).
[CrossRef]

Y. Dai and C. Shu, IEEE Photon. Technol. Lett. 22, 1138 (2010).
[CrossRef]

J. Lightw. Technol. (4)

J. Ma, J. Yu, C. Yu, Z. Jia, X. Sang, Z. Zhou, T. Wang, and G. K. Chang, J. Lightw. Technol. 24, 2851 (2006).
[CrossRef]

K. Inoue, J. Lightw. Technol. 10, 1553 (1992).
[CrossRef]

L. Wang and C. Shu, J. Lightw. Technol. 31, 1468 (2013).
[CrossRef]

A. Bogris and D. Syvridis, J. Lightw. Technol. 21, 1892 (2003).
[CrossRef]

J. Lightwave Technol. (1)

K. Inoue, J. Lightwave Technol. 12, 1916 (1994).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Other (3)

Z. Dong, J. Yu, H. C. Chien, L. Chen, and G. K. Chang, in Proc. of ECOC (IEEE, 2011), paper Th.11.LeSaleve.5.

M. P. Fok, C. Shu, and D. J. Blumenthal, in Proc. OFC/NFOEC (IEEE, 2007), paper JThA52.

L. Wang and C. Shu, in Photonics in Switching Conference (Optical Society of America, 2012), postdeadline paper 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Principle of optical phase control by gain-transparent SBS in dual-orthogonal-pump four-wave mixing. νB, Brillouin frequency shift; fRF, frequency spacing between the SBS pump and the signal, and between the signal and the SBS Stokes wave.

Fig. 2.
Fig. 2.

Experimental setup: TL, tunable laser; EOM, electro-optic intensity modulator; EDFA, erbium-doped fiber amplifier; PC, polarization controller; BPF, band pass filter; PBS, polarization beam splitter; PS, polarization scrambler; HNLF, highly nonlinear fiber; ISO, isolator; VOA, variable optical attenuator; PD, photodetector; OSC, oscilloscope; BERT, bit error rate tester.

Fig. 3.
Fig. 3.

Experimental results of polarization-insensitive wavelength conversion of a 10Gbit/s NRZ-OOK signal assisted by gain-transparent SBS. The signal wavelength is 1550.8 nm. (a) and (b), (i) and (ii) Eye diagrams of the converted idlers without SBS (W/O SBS) and with gain-transparent SBS for maximum CE (W/SBS MAX). (c), (i) and (ii) The corresponding FWM spectra. (d) BER measurement of the input signal (B2B), converted idlers without SBS (W/O SBS), and with gain-transparent SBS for maximum CE (W/SBS MAX).

Fig. 4.
Fig. 4.

Output power of the converted idler against the SOP of the input signal. The red dots and blue triangles correspond to polarization-insensitive idlers without SBS (W/O SBS Insensitive) and with gain-transparent SBS for maximum CE (W/SBS MAX Insensitive). The black squares correspond to polarization-sensitive idler (Sensitive) generated by degenerate FWM between the signal and FWM pump 1. The signal wavelength is set at 1550.8 nm.

Fig. 5.
Fig. 5.

Experimental results of polarization-insensitive wavelength conversion of a 10Gbit/s NRZ-OOK signal assisted by gain-transparent SBS. The signal wavelength is set at 1549.8 nm. (a) and (b), (i) and (ii) Eye diagrams of the converted idlers without SBS (W/O SBS) and with gain-transparent SBS for maximum CE (W/SBS MAX). (c), (i) and (ii) The corresponding FWM spectra. (d) BER measurement for the input signal (B2B) and converted idler with gain-transparent SBS for maximum CE (W/SBS MAX).

Metrics