Abstract

In this Letter, we report on the generation of high-quality Debye diffraction-limited volumetric multifocal arrays. The multifocal arrays with a uniformity of 0.99 over the entire focal region of a high numerical-aperture objective are volumetrically generated by using the vectorial Debye-based three-dimensional (3D) Fourier-transform method, through the accurate phase modulation on an Ewald cap. Thus, this method is capable of dynamic spherical aberration compensation. Applying this feature into 3D parallel aberration-free optical recording reveals a significant increase in the throughput by two orders of magnitude.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
    [CrossRef]
  2. P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
    [CrossRef]
  3. D. G. Grier, Nature 424, 810 (2003).
    [CrossRef]
  4. H. Lin, B. Jia, and M. Gu, Opt. Lett. 36, 406 (2011).
    [CrossRef]
  5. M. Gu, H. Lin, and X. Li, Opt. Lett. 38, 3627 (2013).
    [CrossRef]
  6. T. Haist, M. Schonleber, and H. J. Tiziani, Opt. Commun. 140, 299 (1997).
    [CrossRef]
  7. R. D. Leonardo, F. Ianni, and G. Ruocco, Opt. Express 15, 1913 (2007).
    [CrossRef]
  8. A. Jesacher and M. J. Booth, Opt. Express 18, 21090 (2010).
    [CrossRef]
  9. E. H. Waller and G. Freymann, Opt. Express 21, 21708 (2013).
    [CrossRef]
  10. C. W. McCutchen, J. Opt. Soc. Am. 8, 868 (1991).
    [CrossRef]
  11. G. Shabtay, Opt. Commun. 226, 33 (2003).
    [CrossRef]
  12. J. Lin, O. G. Rodriguez-Herrera, F. Kenny, D. Lara, and J. C. Dainty, Opt. Express 20, 1060 (2012).
    [CrossRef]
  13. G. Whyte and J. Courtial, New J. Phys. 7, 117 (2005).
    [CrossRef]
  14. M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, 2000).
  15. E. Wolf, Proc. R. Soc. London 253, 349 (1959).
    [CrossRef]
  16. M. Polin, K. Ladavac, S. H. Lee, Y. Roichman, and D. G. Grier, Opt. Express 13, 5831 (2005).
    [CrossRef]
  17. X. Li, Y. Cao, and M. Gu, Opt. Lett. 36, 2510 (2011).
    [CrossRef]
  18. P. Torok, P. Varga, Z. Laczik, and G. R. Booker, J. Opt. Soc. Am. A 12, 2136 (1995).
    [CrossRef]
  19. D. Day and M. Gu, Appl. Opt. 37, 6299 (1998).
    [CrossRef]
  20. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, Opt. Express 19, 9419 (2011).
    [CrossRef]
  21. B. P. Cumming, S. Debbarma, B. L. Davies, and M. Gu, Appl. Phys. B 109, 227 (2012).
    [CrossRef]
  22. X. Li, J. W. M. Chon, R. A. Evans, and M. Gu, Appl. Phys. Lett. 92, 063309 (2008).
    [CrossRef]
  23. M. Gu and X. Li, Opt. Photon. News 21(7), 28 (2010).
    [CrossRef]
  24. X. Li, T. H. Lan, C. H. Tien, and M. Gu, Nat. Commun. 3, 998 (2012).
    [CrossRef]
  25. Z. Gan, Y. Cao, R. A. Evans, and M. Gu, Nat. Commun. 4, 2061 (2013).
  26. K. Lou, S. Qian, Z. Ren, C. Tu, Y. Li, and H. Wang, Sci. Rep. 3, 2281 (2013).
    [CrossRef]
  27. M. L. Juan, M. Righini, and R. Quidant, Nat. Photonics 5, 349 (2011).
    [CrossRef]

2013 (4)

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, Nat. Commun. 4, 2061 (2013).

K. Lou, S. Qian, Z. Ren, C. Tu, Y. Li, and H. Wang, Sci. Rep. 3, 2281 (2013).
[CrossRef]

E. H. Waller and G. Freymann, Opt. Express 21, 21708 (2013).
[CrossRef]

M. Gu, H. Lin, and X. Li, Opt. Lett. 38, 3627 (2013).
[CrossRef]

2012 (3)

J. Lin, O. G. Rodriguez-Herrera, F. Kenny, D. Lara, and J. C. Dainty, Opt. Express 20, 1060 (2012).
[CrossRef]

X. Li, T. H. Lan, C. H. Tien, and M. Gu, Nat. Commun. 3, 998 (2012).
[CrossRef]

B. P. Cumming, S. Debbarma, B. L. Davies, and M. Gu, Appl. Phys. B 109, 227 (2012).
[CrossRef]

2011 (4)

2010 (2)

A. Jesacher and M. J. Booth, Opt. Express 18, 21090 (2010).
[CrossRef]

M. Gu and X. Li, Opt. Photon. News 21(7), 28 (2010).
[CrossRef]

2009 (1)

P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
[CrossRef]

2008 (1)

X. Li, J. W. M. Chon, R. A. Evans, and M. Gu, Appl. Phys. Lett. 92, 063309 (2008).
[CrossRef]

2007 (1)

2005 (2)

2003 (2)

D. G. Grier, Nature 424, 810 (2003).
[CrossRef]

G. Shabtay, Opt. Commun. 226, 33 (2003).
[CrossRef]

1998 (1)

1997 (1)

T. Haist, M. Schonleber, and H. J. Tiziani, Opt. Commun. 140, 299 (1997).
[CrossRef]

1995 (1)

1991 (1)

C. W. McCutchen, J. Opt. Soc. Am. 8, 868 (1991).
[CrossRef]

1989 (1)

D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
[CrossRef]

1959 (1)

E. Wolf, Proc. R. Soc. London 253, 349 (1959).
[CrossRef]

Booker, G. R.

Booth, M. J.

Cao, Y.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, Nat. Commun. 4, 2061 (2013).

X. Li, Y. Cao, and M. Gu, Opt. Lett. 36, 2510 (2011).
[CrossRef]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
[CrossRef]

X. Li, J. W. M. Chon, R. A. Evans, and M. Gu, Appl. Phys. Lett. 92, 063309 (2008).
[CrossRef]

Courtial, J.

G. Whyte and J. Courtial, New J. Phys. 7, 117 (2005).
[CrossRef]

Cumming, B. P.

B. P. Cumming, S. Debbarma, B. L. Davies, and M. Gu, Appl. Phys. B 109, 227 (2012).
[CrossRef]

B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, Opt. Express 19, 9419 (2011).
[CrossRef]

Dainty, J. C.

Davies, B. L.

B. P. Cumming, S. Debbarma, B. L. Davies, and M. Gu, Appl. Phys. B 109, 227 (2012).
[CrossRef]

Day, D.

Debbarma, S.

B. P. Cumming, S. Debbarma, B. L. Davies, and M. Gu, Appl. Phys. B 109, 227 (2012).
[CrossRef]

Evans, R. A.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, Nat. Commun. 4, 2061 (2013).

X. Li, J. W. M. Chon, R. A. Evans, and M. Gu, Appl. Phys. Lett. 92, 063309 (2008).
[CrossRef]

Freymann, G.

Gan, Z.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, Nat. Commun. 4, 2061 (2013).

Grier, D. G.

Gu, M.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, Nat. Commun. 4, 2061 (2013).

M. Gu, H. Lin, and X. Li, Opt. Lett. 38, 3627 (2013).
[CrossRef]

B. P. Cumming, S. Debbarma, B. L. Davies, and M. Gu, Appl. Phys. B 109, 227 (2012).
[CrossRef]

X. Li, T. H. Lan, C. H. Tien, and M. Gu, Nat. Commun. 3, 998 (2012).
[CrossRef]

X. Li, Y. Cao, and M. Gu, Opt. Lett. 36, 2510 (2011).
[CrossRef]

B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, Opt. Express 19, 9419 (2011).
[CrossRef]

H. Lin, B. Jia, and M. Gu, Opt. Lett. 36, 406 (2011).
[CrossRef]

M. Gu and X. Li, Opt. Photon. News 21(7), 28 (2010).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
[CrossRef]

X. Li, J. W. M. Chon, R. A. Evans, and M. Gu, Appl. Phys. Lett. 92, 063309 (2008).
[CrossRef]

D. Day and M. Gu, Appl. Opt. 37, 6299 (1998).
[CrossRef]

M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, 2000).

Haist, T.

T. Haist, M. Schonleber, and H. J. Tiziani, Opt. Commun. 140, 299 (1997).
[CrossRef]

Ianni, F.

Jesacher, A.

Jia, B.

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, Nat. Photonics 5, 349 (2011).
[CrossRef]

Kenny, F.

Laczik, Z.

Ladavac, K.

Lan, T. H.

X. Li, T. H. Lan, C. H. Tien, and M. Gu, Nat. Commun. 3, 998 (2012).
[CrossRef]

Lara, D.

Lee, S. H.

Leonardo, R. D.

Li, X.

M. Gu, H. Lin, and X. Li, Opt. Lett. 38, 3627 (2013).
[CrossRef]

X. Li, T. H. Lan, C. H. Tien, and M. Gu, Nat. Commun. 3, 998 (2012).
[CrossRef]

X. Li, Y. Cao, and M. Gu, Opt. Lett. 36, 2510 (2011).
[CrossRef]

M. Gu and X. Li, Opt. Photon. News 21(7), 28 (2010).
[CrossRef]

X. Li, J. W. M. Chon, R. A. Evans, and M. Gu, Appl. Phys. Lett. 92, 063309 (2008).
[CrossRef]

Li, Y.

K. Lou, S. Qian, Z. Ren, C. Tu, Y. Li, and H. Wang, Sci. Rep. 3, 2281 (2013).
[CrossRef]

Lin, H.

Lin, J.

Lou, K.

K. Lou, S. Qian, Z. Ren, C. Tu, Y. Li, and H. Wang, Sci. Rep. 3, 2281 (2013).
[CrossRef]

McCutchen, C. W.

C. W. McCutchen, J. Opt. Soc. Am. 8, 868 (1991).
[CrossRef]

Parthenopoulos, D. A.

D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
[CrossRef]

Polin, M.

Qian, S.

K. Lou, S. Qian, Z. Ren, C. Tu, Y. Li, and H. Wang, Sci. Rep. 3, 2281 (2013).
[CrossRef]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, Nat. Photonics 5, 349 (2011).
[CrossRef]

Ren, Z.

K. Lou, S. Qian, Z. Ren, C. Tu, Y. Li, and H. Wang, Sci. Rep. 3, 2281 (2013).
[CrossRef]

Rentzepis, P. M.

D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
[CrossRef]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, Nat. Photonics 5, 349 (2011).
[CrossRef]

Rodriguez-Herrera, O. G.

Roichman, Y.

Ruocco, G.

Schonleber, M.

T. Haist, M. Schonleber, and H. J. Tiziani, Opt. Commun. 140, 299 (1997).
[CrossRef]

Shabtay, G.

G. Shabtay, Opt. Commun. 226, 33 (2003).
[CrossRef]

Tien, C. H.

X. Li, T. H. Lan, C. H. Tien, and M. Gu, Nat. Commun. 3, 998 (2012).
[CrossRef]

Tiziani, H. J.

T. Haist, M. Schonleber, and H. J. Tiziani, Opt. Commun. 140, 299 (1997).
[CrossRef]

Torok, P.

Tu, C.

K. Lou, S. Qian, Z. Ren, C. Tu, Y. Li, and H. Wang, Sci. Rep. 3, 2281 (2013).
[CrossRef]

Varga, P.

Waller, E. H.

Wang, H.

K. Lou, S. Qian, Z. Ren, C. Tu, Y. Li, and H. Wang, Sci. Rep. 3, 2281 (2013).
[CrossRef]

Whyte, G.

G. Whyte and J. Courtial, New J. Phys. 7, 117 (2005).
[CrossRef]

Wilson, T.

Wolf, E.

E. Wolf, Proc. R. Soc. London 253, 349 (1959).
[CrossRef]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

B. P. Cumming, S. Debbarma, B. L. Davies, and M. Gu, Appl. Phys. B 109, 227 (2012).
[CrossRef]

Appl. Phys. Lett. (1)

X. Li, J. W. M. Chon, R. A. Evans, and M. Gu, Appl. Phys. Lett. 92, 063309 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

C. W. McCutchen, J. Opt. Soc. Am. 8, 868 (1991).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Commun. (2)

X. Li, T. H. Lan, C. H. Tien, and M. Gu, Nat. Commun. 3, 998 (2012).
[CrossRef]

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, Nat. Commun. 4, 2061 (2013).

Nat. Photonics (1)

M. L. Juan, M. Righini, and R. Quidant, Nat. Photonics 5, 349 (2011).
[CrossRef]

Nature (2)

P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
[CrossRef]

D. G. Grier, Nature 424, 810 (2003).
[CrossRef]

New J. Phys. (1)

G. Whyte and J. Courtial, New J. Phys. 7, 117 (2005).
[CrossRef]

Opt. Commun. (2)

G. Shabtay, Opt. Commun. 226, 33 (2003).
[CrossRef]

T. Haist, M. Schonleber, and H. J. Tiziani, Opt. Commun. 140, 299 (1997).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Opt. Photon. News (1)

M. Gu and X. Li, Opt. Photon. News 21(7), 28 (2010).
[CrossRef]

Proc. R. Soc. London (1)

E. Wolf, Proc. R. Soc. London 253, 349 (1959).
[CrossRef]

Sci. Rep. (1)

K. Lou, S. Qian, Z. Ren, C. Tu, Y. Li, and H. Wang, Sci. Rep. 3, 2281 (2013).
[CrossRef]

Science (1)

D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
[CrossRef]

Other (1)

M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of generating a volumetric multifocal array through a SLM. Vectorial Debye-based 3D-FT imposing on the 3D Ewald cap located in the aperture space provides a volumetric intensity distribution in the focal region. Phase pattern displayed on the SLM can be obtained by a parallel projection of the 3D Ewald cap. L1 and L2 are telescope lenses.

Fig. 2.
Fig. 2.

Comparison of the uniformity of volumetric multifocal arrays derived from the vectorial Debye-based 3D-FT and 2D-FT methods. Volumetric multifocal arrays are arranged in three focal planes. (a) Comparison with different foci number in each plane (axial separation is set to 5 μm). (b) Comparison with different axially separated distances (total foci number is kept at 108). An example of intensity distribution of three foci within the x-z plane achieved by (c) the 2D-FT method, and (d) the 3D-FT method.

Fig. 3.
Fig. 3.

Simulated (a)–(c) and experimental (d)–(f) results of a volumetric multifocal array in a recording media. (g) and (h) Enlarged single foci images labeled as “1” and “2” in (b) and (e). (i) and (j) The intensity plots along the x and the y directions of (g) and (h), respectively.

Fig. 4.
Fig. 4.

Experimental results of a volumetric multifocal array recorded in three focal planes: (a) before and (c) after the SA compensation. Axial PSFs of three recorded foci in three layers (b) without, and (d) with the SA compensation are obtained from the fluorescence intensity variations.

Metrics