Abstract

The propagation of a surface plasmon polariton on a planar metal surface perturbed by N equally spaced rectangular grooves, each with the same width but with varying depths, is investigated by the finite-difference time-domain method. For a linear dependence of the depth of the nth groove on n, the transmissivity of the surface plasmon polariton and of the power radiated into the vacuum above the surface, as functions of its frequency, consist of N equally spaced dips and peaks, respectively. These are the signatures of the surface plasmon polariton analog of a Wannier–Stark ladder.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
How grooves reflect and confine surface plasmon polaritons

Martin Kuttge, F. Javier García de Abajo, and Albert Polman
Opt. Express 17(12) 10385-10392 (2009)

Surface plasmon polaritons on deep, narrow-ridged rectangular gratings

M. R. Gadsdon, I. R. Hooper, A. P. Hibbins, and J. R. Sambles
J. Opt. Soc. Am. B 26(6) 1228-1237 (2009)

Surface plasmon polariton resonance and transmission enhancement of light through subwavelength slit arrays in metallic films

Myeong-Woo Kim, Teun-Teun Kim, Jae-Eun Kim, and Hae Yong Park
Opt. Express 17(15) 12315-12322 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription