Abstract

Shear wave propagation provides rich information for material mechanical characterization, including elasticity and viscosity. This Letter reports tracking of shear wave propagation in turbid media by laser-speckle-contrast analysis. The theory is described, and a Monte Carlo simulation of light shear wave interaction was developed. Simulation and experiments on tissue-mimicking phantoms agree well and show tracking of shear wave at the phantom surface and at depth as well as multiple shear waves interacting within the object. The relationship between speckle contrast value and shear wave amplitude is also investigated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ritsema, H. J. van Heijst, and J. H. Woodhouse, Science 286, 1925 (1999).
    [CrossRef]
  2. K. Nightingale, S. McAleavey, and G. Trahey, Ultrasound Med. Biol. 29, 1715 (2003).
    [CrossRef]
  3. R. Muthupillai, D. Lomas, P. Rossman, J. Greenleaf, A. Manduca, and R. Ehman, Science 269, 1854 (1995).
    [CrossRef]
  4. E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, Appl. Phys. Lett. 90, 174111 (2007).
    [CrossRef]
  5. R. J. Zemp, C. Kim, and L. V. Wang, Appl. Opt. 46, 1615 (2007).
    [CrossRef]
  6. Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, Ultrasound Med. Biol. 38, 1637 (2012).
    [CrossRef]
  7. W. Leutz and G. Maret, Phys. B 204, 14 (1995).
    [CrossRef]
  8. L. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
    [CrossRef]
  9. L. V. Wang, Opt. Lett. 26, 1191 (2001).
    [CrossRef]
  10. R. Zemp, S. Sakadzic, and L. V. Wang, Phys. Rev. E 73, 061920 (2006).
    [CrossRef]
  11. J. Goodman, Statistical Optics (Wiley, 1985).
  12. W. F. Cheong, S. A. Prahl, and A. J. Welch, IEEE J. Quantum Electron. 26, 2166 (1990).
    [CrossRef]
  13. J. Bercoff, M. Tanter, and M. Fink, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 396 (2004).
    [CrossRef]
  14. L. Wang, S. L. Jacques, and L. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
    [CrossRef]
  15. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, Appl. Opt. 30, 4507 (1991).
    [CrossRef]
  16. B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, 1973).
  17. R. Li, L. Song, D. S. Elson, and M.-X. Tang, Opt. Lett. 35, 2633 (2010).
    [CrossRef]
  18. R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, Opt. Express 19, 7299 (2011).
    [CrossRef]

2012 (1)

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, Ultrasound Med. Biol. 38, 1637 (2012).
[CrossRef]

2011 (1)

2010 (1)

2007 (2)

R. J. Zemp, C. Kim, and L. V. Wang, Appl. Opt. 46, 1615 (2007).
[CrossRef]

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, Appl. Phys. Lett. 90, 174111 (2007).
[CrossRef]

2006 (1)

R. Zemp, S. Sakadzic, and L. V. Wang, Phys. Rev. E 73, 061920 (2006).
[CrossRef]

2004 (1)

J. Bercoff, M. Tanter, and M. Fink, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 396 (2004).
[CrossRef]

2003 (1)

K. Nightingale, S. McAleavey, and G. Trahey, Ultrasound Med. Biol. 29, 1715 (2003).
[CrossRef]

2001 (2)

L. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef]

L. V. Wang, Opt. Lett. 26, 1191 (2001).
[CrossRef]

1999 (1)

J. Ritsema, H. J. van Heijst, and J. H. Woodhouse, Science 286, 1925 (1999).
[CrossRef]

1995 (3)

R. Muthupillai, D. Lomas, P. Rossman, J. Greenleaf, A. Manduca, and R. Ehman, Science 269, 1854 (1995).
[CrossRef]

W. Leutz and G. Maret, Phys. B 204, 14 (1995).
[CrossRef]

L. Wang, S. L. Jacques, and L. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef]

1991 (1)

1990 (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, IEEE J. Quantum Electron. 26, 2166 (1990).
[CrossRef]

Auld, B. A.

B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, 1973).

Bercoff, J.

J. Bercoff, M. Tanter, and M. Fink, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 396 (2004).
[CrossRef]

Boccara, A.-C.

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, Appl. Phys. Lett. 90, 174111 (2007).
[CrossRef]

Bossy, E.

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, Appl. Phys. Lett. 90, 174111 (2007).
[CrossRef]

Cheng, Y.

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, Ultrasound Med. Biol. 38, 1637 (2012).
[CrossRef]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, IEEE J. Quantum Electron. 26, 2166 (1990).
[CrossRef]

Daoudi, K.

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, Appl. Phys. Lett. 90, 174111 (2007).
[CrossRef]

Dunsby, C.

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, Ultrasound Med. Biol. 38, 1637 (2012).
[CrossRef]

R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, Opt. Express 19, 7299 (2011).
[CrossRef]

Eckersley, R.

Eckersley, R. J.

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, Ultrasound Med. Biol. 38, 1637 (2012).
[CrossRef]

Ehman, R.

R. Muthupillai, D. Lomas, P. Rossman, J. Greenleaf, A. Manduca, and R. Ehman, Science 269, 1854 (1995).
[CrossRef]

Elson, D. S.

Fink, M.

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, Appl. Phys. Lett. 90, 174111 (2007).
[CrossRef]

J. Bercoff, M. Tanter, and M. Fink, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 396 (2004).
[CrossRef]

Funke, A. R.

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, Appl. Phys. Lett. 90, 174111 (2007).
[CrossRef]

Goodman, J.

J. Goodman, Statistical Optics (Wiley, 1985).

Greenleaf, J.

R. Muthupillai, D. Lomas, P. Rossman, J. Greenleaf, A. Manduca, and R. Ehman, Science 269, 1854 (1995).
[CrossRef]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef]

Kim, C.

Leutz, W.

W. Leutz and G. Maret, Phys. B 204, 14 (1995).
[CrossRef]

Li, R.

Li, S.

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, Ultrasound Med. Biol. 38, 1637 (2012).
[CrossRef]

Lomas, D.

R. Muthupillai, D. Lomas, P. Rossman, J. Greenleaf, A. Manduca, and R. Ehman, Science 269, 1854 (1995).
[CrossRef]

Manduca, A.

R. Muthupillai, D. Lomas, P. Rossman, J. Greenleaf, A. Manduca, and R. Ehman, Science 269, 1854 (1995).
[CrossRef]

Maret, G.

W. Leutz and G. Maret, Phys. B 204, 14 (1995).
[CrossRef]

McAleavey, S.

K. Nightingale, S. McAleavey, and G. Trahey, Ultrasound Med. Biol. 29, 1715 (2003).
[CrossRef]

Moes, C. J. M.

Muthupillai, R.

R. Muthupillai, D. Lomas, P. Rossman, J. Greenleaf, A. Manduca, and R. Ehman, Science 269, 1854 (1995).
[CrossRef]

Nightingale, K.

K. Nightingale, S. McAleavey, and G. Trahey, Ultrasound Med. Biol. 29, 1715 (2003).
[CrossRef]

Prahl, S. A.

Ritsema, J.

J. Ritsema, H. J. van Heijst, and J. H. Woodhouse, Science 286, 1925 (1999).
[CrossRef]

Rossman, P.

R. Muthupillai, D. Lomas, P. Rossman, J. Greenleaf, A. Manduca, and R. Ehman, Science 269, 1854 (1995).
[CrossRef]

Sakadzic, S.

R. Zemp, S. Sakadzic, and L. V. Wang, Phys. Rev. E 73, 061920 (2006).
[CrossRef]

Song, L.

Tang, M.-X.

Tanter, M.

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, Appl. Phys. Lett. 90, 174111 (2007).
[CrossRef]

J. Bercoff, M. Tanter, and M. Fink, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 396 (2004).
[CrossRef]

Trahey, G.

K. Nightingale, S. McAleavey, and G. Trahey, Ultrasound Med. Biol. 29, 1715 (2003).
[CrossRef]

van Gemert, M. J. C.

van Heijst, H. J.

J. Ritsema, H. J. van Heijst, and J. H. Woodhouse, Science 286, 1925 (1999).
[CrossRef]

van Marie, J.

van Staveren, H. J.

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef]

Wang, L. V.

R. J. Zemp, C. Kim, and L. V. Wang, Appl. Opt. 46, 1615 (2007).
[CrossRef]

R. Zemp, S. Sakadzic, and L. V. Wang, Phys. Rev. E 73, 061920 (2006).
[CrossRef]

L. V. Wang, Opt. Lett. 26, 1191 (2001).
[CrossRef]

L. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, IEEE J. Quantum Electron. 26, 2166 (1990).
[CrossRef]

Woodhouse, J. H.

J. Ritsema, H. J. van Heijst, and J. H. Woodhouse, Science 286, 1925 (1999).
[CrossRef]

Zemp, R.

R. Zemp, S. Sakadzic, and L. V. Wang, Phys. Rev. E 73, 061920 (2006).
[CrossRef]

Zemp, R. J.

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, Appl. Phys. Lett. 90, 174111 (2007).
[CrossRef]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, IEEE J. Quantum Electron. 26, 2166 (1990).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. Bercoff, M. Tanter, and M. Fink, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 396 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. B (1)

W. Leutz and G. Maret, Phys. B 204, 14 (1995).
[CrossRef]

Phys. Rev. E (1)

R. Zemp, S. Sakadzic, and L. V. Wang, Phys. Rev. E 73, 061920 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

L. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef]

Science (2)

J. Ritsema, H. J. van Heijst, and J. H. Woodhouse, Science 286, 1925 (1999).
[CrossRef]

R. Muthupillai, D. Lomas, P. Rossman, J. Greenleaf, A. Manduca, and R. Ehman, Science 269, 1854 (1995).
[CrossRef]

Ultrasound Med. Biol. (2)

K. Nightingale, S. McAleavey, and G. Trahey, Ultrasound Med. Biol. 29, 1715 (2003).
[CrossRef]

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, Ultrasound Med. Biol. 38, 1637 (2012).
[CrossRef]

Other (2)

J. Goodman, Statistical Optics (Wiley, 1985).

B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, 1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the top view of the simulation/experiment setup. (a) Imaging shear wave front near sample surface: r1 (3.34 mm) and r=r1d2/d1 are the radii of the imaged CCD array and the projected light exit plane. (b) Tracking shear wave propagating at depth: L (31 mm) is the distance between the laser and the shear wave source; r1 (3.5 mm) and r=r1(d1+d2)/d1 are the radii of iris and the CCD pixel projected onto the light exit plane (the single pixel is simplified as a point). ARF denotes for acoustic radiation force, which is loaded in the direction perpendicular to the laser axis.

Fig. 2.
Fig. 2.

(a) Simulated near-surface shear wave front with normalized displacement and that imaged by the localized laser speckle contrast difference (ΔC) at 4 ms in (b) simulation and (c) experiment. The acoustic radiation force was launched along the position 0.

Fig. 3.
Fig. 3.

(a) Simulated and (b) experimental results of time-resolved CCD contrast difference induced by a single shear wave and dual-shear waves at depth. The solid and dashed blue curves in (a) are simulation results without consideration of shear wave reflections; the solid black curves in (a) and in (b) are the simulation and experimental results counted in the shear wave reflections.

Fig. 4.
Fig. 4.

Peak value of time-resolved CCD contrast difference against shear wave amplitude in (a) simulation and (b) square of transducer input voltage in experiment.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I¯=E(t)E*(t+τ)t,ε|(τ=0),
σ=[E(t)E*(t+τ)]2t,τ,ε,,
E(t)E*(t+τ)t=i=1NEi(t)Ei*(t+τ)t=1Ni=1Nexp[i(k=1NΔφik(t,τ))]t,
Δrik(t)=[rik+uik(t)][ri(k1)+ui(k1)(t)],
Δφik(t,τ)=nk[Δrik(t+τ)Δrik(t)],
u(r,τ)=dτf(ξ,τ)g(rξ,tτ)dξ,

Metrics