Abstract

We present a sensing architecture consisting of a two-core chirped microstructured optical fiber (MOF) for refractive index sensing of fluids. We show that by introducing a chirp in the hole size, the MOF can be a structure with decoupled cores, forming a Mach–Zehnder interferometer in which the analyte directly modulates the device transmittance by its differential influence on the effective refractive index of each core mode. We show that by filling all fiber holes with analyte, the sensing structure achieves high sensitivity (transmittance changes of 300 per RIU at 1.42) and has the potential for use over a wide range of analyte refractive index.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, J. Lightwave Technol. 24, 4729 (2006).
    [CrossRef]
  2. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, Electron. Lett. 35, 1188 (1999).
    [CrossRef]
  3. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
    [CrossRef]
  4. J. M. Fini, Meas. Sci. Technol. 15, 1120 (2004).
    [CrossRef]
  5. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, H. Sorensen, T. P. Hansen, and H. R. Simonsen, Opt. Express 12, 4080 (2004).
    [CrossRef]
  6. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, Opt. Lett. 34, 322 (2009).
    [CrossRef]
  7. B. T. Kuhlmey, S. Coen, and S. Mahmoodian, Opt. Express 17, 16306 (2009).
    [CrossRef]
  8. B. Sun, M. Y. Chen, Y. K. Zhang, J. C. Yang, J. Q. Yao, and H. X. Cui, Opt. Express 19, 4091 (2011).
    [CrossRef]
  9. G. E. Town, W. Yuan, R. McCosker, and O. Bang, Opt. Lett. 35, 856 (2010).
    [CrossRef]
  10. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, Opt. Express 19, 7790 (2011).
    [CrossRef]
  11. W. Yuan, G. E. Town, and O. Bang, IEEE Sens. J. 10, 1192 (2010).
    [CrossRef]
  12. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, Opt. Lett. 19, 201 (1994).
    [CrossRef]
  13. N. Matuschek, F. X. Kärtner, and U. Keller, IEEE J. Quantum Electron. 35, 129 (1999).
    [CrossRef]
  14. F. Ouellette, Opt. Lett. 12, 847 (1987).
    [CrossRef]
  15. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeter, Nat. Photonics 2, 679 (2008).
    [CrossRef]
  16. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, Opt. Lett. 34, 617 (2009).
    [CrossRef]
  17. G. Salceda-Delgado, D. Monzón-Hernández, A. Martínez-Ríos, G. A. Cárdenas-Sevilla, and J. Villatoro, Opt. Lett. 37, 1974 (2012).
    [CrossRef]

2012 (1)

2011 (2)

2010 (2)

G. E. Town, W. Yuan, R. McCosker, and O. Bang, Opt. Lett. 35, 856 (2010).
[CrossRef]

W. Yuan, G. E. Town, and O. Bang, IEEE Sens. J. 10, 1192 (2010).
[CrossRef]

2009 (3)

2008 (1)

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeter, Nat. Photonics 2, 679 (2008).
[CrossRef]

2006 (1)

2004 (2)

2001 (1)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

1999 (2)

N. Matuschek, F. X. Kärtner, and U. Keller, IEEE J. Quantum Electron. 35, 129 (1999).
[CrossRef]

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, Electron. Lett. 35, 1188 (1999).
[CrossRef]

1994 (1)

1987 (1)

Badenes, G.

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

Bang, O.

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

Beloglasov, V. I.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeter, Nat. Photonics 2, 679 (2008).
[CrossRef]

Bennett, P. J.

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, Electron. Lett. 35, 1188 (1999).
[CrossRef]

Bethge, J.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeter, Nat. Photonics 2, 679 (2008).
[CrossRef]

Bock, M.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeter, Nat. Photonics 2, 679 (2008).
[CrossRef]

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, Electron. Lett. 35, 1188 (1999).
[CrossRef]

Cárdenas-Sevilla, G. A.

Chen, M. Y.

Coen, S.

Cui, H. X.

Eggleton, B. J.

Ferencz, K.

Fini, J. M.

J. M. Fini, Meas. Sci. Technol. 15, 1120 (2004).
[CrossRef]

Fischer, D.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeter, Nat. Photonics 2, 679 (2008).
[CrossRef]

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

Hansen, T. P.

Iliew, R.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeter, Nat. Photonics 2, 679 (2008).
[CrossRef]

Jha, R.

Kärtner, F. X.

N. Matuschek, F. X. Kärtner, and U. Keller, IEEE J. Quantum Electron. 35, 129 (1999).
[CrossRef]

Keller, U.

N. Matuschek, F. X. Kärtner, and U. Keller, IEEE J. Quantum Electron. 35, 129 (1999).
[CrossRef]

Krausz, F.

Kuhlmey, B. T.

Ludvigsen, H.

Mahmoodian, S.

Markos, C.

Martínez-Ríos, A.

Matuschek, N.

N. Matuschek, F. X. Kärtner, and U. Keller, IEEE J. Quantum Electron. 35, 129 (1999).
[CrossRef]

McCosker, R.

Monro, T. M.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, Electron. Lett. 35, 1188 (1999).
[CrossRef]

Monzón-Hernández, D.

Ouellette, F.

Petersen, J. C.

Pruneri, V.

Richardson, D. J.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, Electron. Lett. 35, 1188 (1999).
[CrossRef]

Ritari, T.

Russell, P. St. J.

Salceda-Delgado, G.

Simonsen, H. R.

Skibina, J. S.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeter, Nat. Photonics 2, 679 (2008).
[CrossRef]

Sorensen, H.

Spielmann, C.

Steinmeter, G.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeter, Nat. Photonics 2, 679 (2008).
[CrossRef]

Sun, B.

Szipöcs, R.

Town, G. E.

Tuominen, J.

Villatoro, J.

Vlachos, K.

Wedell, R.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeter, Nat. Photonics 2, 679 (2008).
[CrossRef]

Wu, D. K. C.

Yang, J. C.

Yao, J. Q.

Yuan, W.

Zhang, Y. K.

Electron. Lett. (1)

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, Electron. Lett. 35, 1188 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Matuschek, F. X. Kärtner, and U. Keller, IEEE J. Quantum Electron. 35, 129 (1999).
[CrossRef]

IEEE Sens. J. (1)

W. Yuan, G. E. Town, and O. Bang, IEEE Sens. J. 10, 1192 (2010).
[CrossRef]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (2)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12, 854 (2001).
[CrossRef]

J. M. Fini, Meas. Sci. Technol. 15, 1120 (2004).
[CrossRef]

Nat. Photonics (1)

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeter, Nat. Photonics 2, 679 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) SEM image of the fabricated MOF. (b) Fundamental mode distribution in left and right core at λ=633nm: pitch Λ=2.3μm and hole diameter variable from an average value of d=1.7μm on the left side of the fiber to an average value of d=0.56μm on the right side; the host refractive index is nh=1.45 and all fiber holes are filled with an analyte with refractive index na=1.42.

Fig. 2.
Fig. 2.

(a) Effective refractive index difference of the horizontal (solid line) and vertical (dashed line) polarizations and (b) phase difference for horizontally polarized input between the two fundamental mode that propagate through the fiber cores as a function of analyte refractive index when all fiber holes are filled with analyte.

Fig. 3.
Fig. 3.

Transmittance of the two-core chirped microstructured fiber for horizontally polarized input and L=12mm and L=15mm fiber length as a function of analyte refractive index when all fiber holes are filled with analyte.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T=cos2(δL2),

Metrics