Abstract

Dielectric microparticles are used as simple and low-cost means to achieve strong intensity confinement below the standard diffraction limit. Here we report the demonstration of enhanced light intensity in the vicinity of optical fiber combined with dielectric spheroidal particles. Specific attention is paid to the study of the influences of the spheroid’s ellipticity (ratio of horizontal length to vertical length) as well as the refractive index on the intensity enhancement and focal distance. It reveals that simply varying the ellipticity, it is possible to obtain localized photon fluxes having different characteristics. This could yield a new superenhanced intensity device with excellent optical properties and low manufacturing cost for using visible light in many areas of biology, material sciences, chemistry, medicine, and tissue engineering.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen, A. Taflove, and V. Backman, Opt. Express 12, 1214 (2004).
    [CrossRef]
  2. A. Itagi and W. Challener, J. Opt. Soc. Am. A 22, 2847 (2005).
    [CrossRef]
  3. S. Lecler, Y. Takakura, and P. Meyrueis, Opt. Lett. 30, 2641 (2005).
    [CrossRef]
  4. A. Devilez, B. Stout, N. Bonod, and E. Popov, Opt. Express 16, 14200 (2008).
    [CrossRef]
  5. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, Opt. Express 16, 6930 (2008).
    [CrossRef]
  6. X. Li, Z. G. Chen, A. Taflove, and V. Backman, Opt. Express 13, 526 (2005).
    [CrossRef]
  7. P. Ghenuche, H. Rigneault, and J. Wenger, Appl. Opt. 51, 8637 (2012).
    [CrossRef]
  8. S. C. Kong, A. Sahakian, A. Taflove, and V. Backman, Opt. Express 16, 13713 (2008).
    [CrossRef]
  9. S. C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, Appl. Phys. Lett. 92, 211102 (2008).
    [CrossRef]
  10. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
    [CrossRef]
  11. Y. Duan, G. Barbastathis, and B. Zhang, Opt. Lett. 38, 2988 (2013).
    [CrossRef]
  12. A. Devilez, B. Stout, and N. Bonod, ACS Nano 4, 3390 (2010).
    [CrossRef]
  13. H. Seidfaraji, M. Hasan, and J. J. Simpson, International Conference on Electromagnetics in Advanced Applications (ICEAA) (2012), p. 949.
  14. V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, SPIE Newsroom 12, 32 (2010).
    [CrossRef]
  15. X. Cui, D. Erni, and C. Hafner, Opt. Express 16, 13560 (2008).
    [CrossRef]
  16. V. Yannopapas, Opt. Commun. 285, 2952 (2012).
    [CrossRef]
  17. K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, J. Appl. Phys. 101, 063528 (2007).
    [CrossRef]
  18. C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, J. Raman Spectrosc. 42, 145 (2011).
    [CrossRef]
  19. J. Kasim, T. Yu, Y. M. You, J. P. Liu, A. See, L. J. Li, and Z. X. Shen, Opt. Express 16, 7976 (2008).
    [CrossRef]
  20. M. J. Mendes, I. T. Galicia, A. M. Vega, and A. L. López, Opt. Express 19, 16207 (2011).
    [CrossRef]
  21. Y. Han, L. Méès, K. Ren, G. Gouesbet, S. Wu, and G. Gréhan, Opt. Commun. 210, 1 (2002).
    [CrossRef]
  22. G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, 2011).
  23. Y. Han and Z. Wu, Appl. Opt. 40, 2501 (2001).
    [CrossRef]
  24. L. Han, Y. Han, J. Wang, and G. Gouesbet, J. Quant. Spectrosc. Radiat. Transfer 126, 38 (2013).
    [CrossRef]
  25. F. Xu, K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, J. Opt. Soc. Am. A 24, 119 (2007).
    [CrossRef]
  26. G. Gouesbet, F. Xu, and Y. Han, J. Quant. Spectrosc. Radiat. Transfer 112, 1 (2011).
    [CrossRef]
  27. C. Flammer, Spheroidal Wave Functions (Stanford University, 1957).

2013

L. Han, Y. Han, J. Wang, and G. Gouesbet, J. Quant. Spectrosc. Radiat. Transfer 126, 38 (2013).
[CrossRef]

Y. Duan, G. Barbastathis, and B. Zhang, Opt. Lett. 38, 2988 (2013).
[CrossRef]

2012

2011

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

G. Gouesbet, F. Xu, and Y. Han, J. Quant. Spectrosc. Radiat. Transfer 112, 1 (2011).
[CrossRef]

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, J. Raman Spectrosc. 42, 145 (2011).
[CrossRef]

M. J. Mendes, I. T. Galicia, A. M. Vega, and A. L. López, Opt. Express 19, 16207 (2011).
[CrossRef]

2010

A. Devilez, B. Stout, and N. Bonod, ACS Nano 4, 3390 (2010).
[CrossRef]

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, SPIE Newsroom 12, 32 (2010).
[CrossRef]

2008

2007

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

F. Xu, K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, J. Opt. Soc. Am. A 24, 119 (2007).
[CrossRef]

2005

2004

2002

Y. Han, L. Méès, K. Ren, G. Gouesbet, S. Wu, and G. Gréhan, Opt. Commun. 210, 1 (2002).
[CrossRef]

2001

Allen, K. W.

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, SPIE Newsroom 12, 32 (2010).
[CrossRef]

Antoszyk, A. N.

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, SPIE Newsroom 12, 32 (2010).
[CrossRef]

Astratov, V. N.

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, SPIE Newsroom 12, 32 (2010).
[CrossRef]

Backman, V.

Barbastathis, G.

Bonod, N.

Cai, X.

Challener, W.

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Z. Chen, A. Taflove, and V. Backman, Opt. Express 12, 1214 (2004).
[CrossRef]

Chen, Z. G.

Cui, X.

Darafsheh, A.

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, SPIE Newsroom 12, 32 (2010).
[CrossRef]

Devilez, A.

Du, C. L.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, J. Raman Spectrosc. 42, 145 (2011).
[CrossRef]

Duan, Y.

Erni, D.

Ferrand, P.

Flammer, C.

C. Flammer, Spheroidal Wave Functions (Stanford University, 1957).

Fried, N. M.

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, SPIE Newsroom 12, 32 (2010).
[CrossRef]

Galicia, I. T.

Ghenuche, P.

Gouesbet, G.

L. Han, Y. Han, J. Wang, and G. Gouesbet, J. Quant. Spectrosc. Radiat. Transfer 126, 38 (2013).
[CrossRef]

G. Gouesbet, F. Xu, and Y. Han, J. Quant. Spectrosc. Radiat. Transfer 112, 1 (2011).
[CrossRef]

F. Xu, K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, J. Opt. Soc. Am. A 24, 119 (2007).
[CrossRef]

Y. Han, L. Méès, K. Ren, G. Gouesbet, S. Wu, and G. Gréhan, Opt. Commun. 210, 1 (2002).
[CrossRef]

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, 2011).

Gréhan, G.

F. Xu, K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, J. Opt. Soc. Am. A 24, 119 (2007).
[CrossRef]

Y. Han, L. Méès, K. Ren, G. Gouesbet, S. Wu, and G. Gréhan, Opt. Commun. 210, 1 (2002).
[CrossRef]

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, 2011).

Guo, W.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Hafner, C.

Han, L.

L. Han, Y. Han, J. Wang, and G. Gouesbet, J. Quant. Spectrosc. Radiat. Transfer 126, 38 (2013).
[CrossRef]

Han, Y.

L. Han, Y. Han, J. Wang, and G. Gouesbet, J. Quant. Spectrosc. Radiat. Transfer 126, 38 (2013).
[CrossRef]

G. Gouesbet, F. Xu, and Y. Han, J. Quant. Spectrosc. Radiat. Transfer 112, 1 (2011).
[CrossRef]

Y. Han, L. Méès, K. Ren, G. Gouesbet, S. Wu, and G. Gréhan, Opt. Commun. 210, 1 (2002).
[CrossRef]

Y. Han and Z. Wu, Appl. Opt. 40, 2501 (2001).
[CrossRef]

Hasan, M.

H. Seidfaraji, M. Hasan, and J. J. Simpson, International Conference on Electromagnetics in Advanced Applications (ICEAA) (2012), p. 949.

Heifetz, A.

S. C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

Hong, M.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Itagi, A.

Kasim, J.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, J. Raman Spectrosc. 42, 145 (2011).
[CrossRef]

J. Kasim, T. Yu, Y. M. You, J. P. Liu, A. See, L. J. Li, and Z. X. Shen, Opt. Express 16, 7976 (2008).
[CrossRef]

Kerr, M. D.

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, SPIE Newsroom 12, 32 (2010).
[CrossRef]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Kong, S. C.

S. C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

S. C. Kong, A. Sahakian, A. Taflove, and V. Backman, Opt. Express 16, 13713 (2008).
[CrossRef]

Lecler, S.

Li, L.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Li, L. J.

Li, X.

Liu, J. P.

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

López, A. L.

Lu, Y. F.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Méès, L.

Y. Han, L. Méès, K. Ren, G. Gouesbet, S. Wu, and G. Gréhan, Opt. Commun. 210, 1 (2002).
[CrossRef]

Mendes, M. J.

Meyrueis, P.

Pianta, M.

Popov, E.

Ren, K.

F. Xu, K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, J. Opt. Soc. Am. A 24, 119 (2007).
[CrossRef]

Y. Han, L. Méès, K. Ren, G. Gouesbet, S. Wu, and G. Gréhan, Opt. Commun. 210, 1 (2002).
[CrossRef]

Rigneault, H.

Sahakian, A.

Sahakian, A. V.

S. C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

See, A.

Seidfaraji, H.

H. Seidfaraji, M. Hasan, and J. J. Simpson, International Conference on Electromagnetics in Advanced Applications (ICEAA) (2012), p. 949.

Shen, Z. X.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, J. Raman Spectrosc. 42, 145 (2011).
[CrossRef]

J. Kasim, T. Yu, Y. M. You, J. P. Liu, A. See, L. J. Li, and Z. X. Shen, Opt. Express 16, 7976 (2008).
[CrossRef]

Shi, D. N.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, J. Raman Spectrosc. 42, 145 (2011).
[CrossRef]

Simpson, J. J.

H. Seidfaraji, M. Hasan, and J. J. Simpson, International Conference on Electromagnetics in Advanced Applications (ICEAA) (2012), p. 949.

Stout, B.

Taflove, A.

Takakura, Y.

Vega, A. M.

Wang, H.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

Wang, J.

L. Han, Y. Han, J. Wang, and G. Gouesbet, J. Quant. Spectrosc. Radiat. Transfer 126, 38 (2013).
[CrossRef]

Wang, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Wenger, J.

Wu, S.

Y. Han, L. Méès, K. Ren, G. Gouesbet, S. Wu, and G. Gréhan, Opt. Commun. 210, 1 (2002).
[CrossRef]

Wu, Z.

Xu, F.

G. Gouesbet, F. Xu, and Y. Han, J. Quant. Spectrosc. Radiat. Transfer 112, 1 (2011).
[CrossRef]

F. Xu, K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, J. Opt. Soc. Am. A 24, 119 (2007).
[CrossRef]

Yang, Z. Y.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

Yannopapas, V.

V. Yannopapas, Opt. Commun. 285, 2952 (2012).
[CrossRef]

Yi, K. J.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

Ying, H. S.

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, SPIE Newsroom 12, 32 (2010).
[CrossRef]

You, Y. M.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, J. Raman Spectrosc. 42, 145 (2011).
[CrossRef]

J. Kasim, T. Yu, Y. M. You, J. P. Liu, A. See, L. J. Li, and Z. X. Shen, Opt. Express 16, 7976 (2008).
[CrossRef]

Yu, T.

Zhang, B.

ACS Nano

A. Devilez, B. Stout, and N. Bonod, ACS Nano 4, 3390 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

J. Appl. Phys.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

J. Opt. Soc. Am. A

J. Quant. Spectrosc. Radiat. Transfer

L. Han, Y. Han, J. Wang, and G. Gouesbet, J. Quant. Spectrosc. Radiat. Transfer 126, 38 (2013).
[CrossRef]

G. Gouesbet, F. Xu, and Y. Han, J. Quant. Spectrosc. Radiat. Transfer 112, 1 (2011).
[CrossRef]

J. Raman Spectrosc.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, J. Raman Spectrosc. 42, 145 (2011).
[CrossRef]

Nat. Commun.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Opt. Commun.

Y. Han, L. Méès, K. Ren, G. Gouesbet, S. Wu, and G. Gréhan, Opt. Commun. 210, 1 (2002).
[CrossRef]

V. Yannopapas, Opt. Commun. 285, 2952 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

SPIE Newsroom

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, SPIE Newsroom 12, 32 (2010).
[CrossRef]

Other

H. Seidfaraji, M. Hasan, and J. J. Simpson, International Conference on Electromagnetics in Advanced Applications (ICEAA) (2012), p. 949.

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, 2011).

C. Flammer, Spheroidal Wave Functions (Stanford University, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic diagram for the optical fiber distal face etched with spheroid. (b) Geometry of the spheroid under study.

Fig. 2.
Fig. 2.

Spatial distributions of the photonic jet relative intensity formed in the vicinity of silica spheroids with different ellipticities: (a) a/b=0.7634, (b) a/b=0.8929, (c) a/b=1, (d) a/b=1.09, and (e) a/b=1.18. The refractive index of the silica spheroid is nII=1.43.

Fig. 3.
Fig. 3.

Evolution of (a) the maximum intensity enhancement and (b) the point of the maximum intensity as the spheroid’s ellipticity increases for three refractive indices of the spheroid (nII=1.43, 1.5, 1.59).

Fig. 4.
Fig. 4.

(a) Schematic of the optical fiber bundle with spheroids focus on the photoresist plane. (b) The two-dimensional intensity distribution in the photoresist plane, calculated by our three-dimensional GLMT code.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Ei=n=1in[Gn(cI)Me1nr(1)(cI,ξ,η,ϕ)+iFn(cI)No1nr(1)(cI,ξ,η,ϕ)],
Hi=k1ωμ1n=1in[Gn(cI)Mo1nr(1)(cI,ξ,η,ϕ)iFn(cI)Ne1nr(1)(cI,ξ,η,ϕ)],
Es=n=1in[βnMe1nr(3)(cI,ξ,η,ϕ)+iαnNo1nr(3)(cI,ξ,η,ϕ)],
Hs=k1ωμ1n=1in[αnMo1nr(3)(cI,ξ,η,ϕ)iβnNe1nr(3)(cI,ξ,η,ϕ)],
Ew=n=1in[δnMe1nr(1)(cII,ξ,η,ϕ)+iγnNo1nr(1)(cII,ξ,η,ϕ)],
Hw=k2ωμ2n=1in[γnMo1nr(1)(cII,ξ,η,ϕ)iδnNe1nr(1)(cII,ξ,η,ϕ)].
Is=EsEs*=EηsEηs*+EξsEξs*+EϕsEϕs*,
Iw=EwEw*=EηwEηw*+EξwEξw*+EϕwEϕw*,
cIicI,cIIicII,ξiξ.

Metrics