Abstract

We demonstrate frequency translation at microwatt pump power levels in Rubidium vapor confined to a hollow-core photonic bandgap fiber using four-wave mixing Bragg scattering. The 5S1/25D3/2 two-photon transition in Rb85 is employed for the four-wave mixing process. Using continuous-wave pump beams at 780 and 795 nm, a weak signal beam at 776 nm is translated to a wavelength of 762 nm with a 21% conversion efficiency at pump powers of 300 μW.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kumar, Opt. Lett. 15, 1476 (1990).
    [CrossRef]
  2. N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, Nature 478, 360 (2011).
    [CrossRef]
  3. F. Vewinger, J. Appel, E. Figueroa, and A. I. Lvovsky, Opt. Lett. 32, 2771 (2007).
    [CrossRef]
  4. A. I. Lvovsky, B. C. Sanders, and W. Tittel, Nat. Photonics 3, 706 (2009).
    [CrossRef]
  5. C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, Opt. Express 13, 9131 (2005).
    [CrossRef]
  6. C. J. McKinstrie, S. Radic, and M. G. Raymer, Opt. Express 12, 5037 (2004).
    [CrossRef]
  7. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, IEEE Photon. Technol. Lett. 23, 109 (2011).
    [CrossRef]
  8. A. H. Gnauck, R. M. Jopson, C. J. McKinstrie, and J. C. Centanni, Opt. Express 14, 8989 (2006).
    [CrossRef]
  9. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, Phys. Rev. Lett. 105, 093604 (2010).
    [CrossRef]
  10. D. Méchin, R. Provo, J. D. Harvey, and C. J. McKinstrie, Opt. Express 14, 8995 (2006).
    [CrossRef]
  11. S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, and A. L. Gaeta, Phys. Rev. Lett 97, 023603 (2006).
    [CrossRef]
  12. P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, Phys. Rev. Lett. 103, 043602 (2009).
    [CrossRef]
  13. V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, Opt. Lett. 35, 2287 (2010).
    [CrossRef]
  14. V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, Phys. Rev. Lett. 107, 193902 (2011).
    [CrossRef]
  15. K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, Phys. Rev. A 83, 033833 (2011).
    [CrossRef]
  16. V. Venkataraman, K. Saha, and A. L. Gaeta, Nat. Photonics 7, 138 (2012).
    [CrossRef]
  17. T. Meijer, J. D. White, B. Smeets, M. Jeppesen, and R. E. Scholten, Opt. Lett. 31, 1002 (2006).
    [CrossRef]
  18. M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, Phys. Rev. Lett. 55, 1086 (1985).
    [CrossRef]
  19. R. W. Boyd, M. S. Malcuit, and D. J. Gauthier, Phys. Rev. A 35, 1648 (1987).
    [CrossRef]
  20. R. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  21. L. Stern, B. Desiatov, I. Goykhman, and U. Levy, Nat. Commun. 4, 1548 (2013).
    [CrossRef]
  22. I. Agha, S. Ates, M. Davanço, and K. Srinivasan, Opt. Express 21, 21628 (2013).
    [CrossRef]

2013

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, Nat. Commun. 4, 1548 (2013).
[CrossRef]

I. Agha, S. Ates, M. Davanço, and K. Srinivasan, Opt. Express 21, 21628 (2013).
[CrossRef]

2012

V. Venkataraman, K. Saha, and A. L. Gaeta, Nat. Photonics 7, 138 (2012).
[CrossRef]

2011

V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, Phys. Rev. Lett. 107, 193902 (2011).
[CrossRef]

K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, Phys. Rev. A 83, 033833 (2011).
[CrossRef]

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, Nature 478, 360 (2011).
[CrossRef]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, IEEE Photon. Technol. Lett. 23, 109 (2011).
[CrossRef]

2010

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, Phys. Rev. Lett. 105, 093604 (2010).
[CrossRef]

V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, Opt. Lett. 35, 2287 (2010).
[CrossRef]

2009

A. I. Lvovsky, B. C. Sanders, and W. Tittel, Nat. Photonics 3, 706 (2009).
[CrossRef]

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef]

2007

2006

2005

2004

1990

1987

R. W. Boyd, M. S. Malcuit, and D. J. Gauthier, Phys. Rev. A 35, 1648 (1987).
[CrossRef]

1985

M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, Phys. Rev. Lett. 55, 1086 (1985).
[CrossRef]

Agha, I.

Appel, J.

Ates, S.

Bhagwat, A. R.

V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, Opt. Lett. 35, 2287 (2010).
[CrossRef]

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef]

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, and A. L. Gaeta, Phys. Rev. Lett 97, 023603 (2006).
[CrossRef]

Boyd, R.

R. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Boyd, R. W.

R. W. Boyd, M. S. Malcuit, and D. J. Gauthier, Phys. Rev. A 35, 1648 (1987).
[CrossRef]

M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, Phys. Rev. Lett. 55, 1086 (1985).
[CrossRef]

Centanni, J. C.

Davanço, M.

Desiatov, B.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, Nat. Commun. 4, 1548 (2013).
[CrossRef]

Figueroa, E.

Gaeta, A. L.

V. Venkataraman, K. Saha, and A. L. Gaeta, Nat. Photonics 7, 138 (2012).
[CrossRef]

V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, Phys. Rev. Lett. 107, 193902 (2011).
[CrossRef]

K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, Phys. Rev. A 83, 033833 (2011).
[CrossRef]

V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, Opt. Lett. 35, 2287 (2010).
[CrossRef]

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef]

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, and A. L. Gaeta, Phys. Rev. Lett 97, 023603 (2006).
[CrossRef]

Gauthier, D. J.

R. W. Boyd, M. S. Malcuit, and D. J. Gauthier, Phys. Rev. A 35, 1648 (1987).
[CrossRef]

M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, Phys. Rev. Lett. 55, 1086 (1985).
[CrossRef]

Ghosh, S.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, and A. L. Gaeta, Phys. Rev. Lett 97, 023603 (2006).
[CrossRef]

Gnauck, A. H.

Goh, S.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, and A. L. Gaeta, Phys. Rev. Lett 97, 023603 (2006).
[CrossRef]

Goykhman, I.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, Nat. Commun. 4, 1548 (2013).
[CrossRef]

Harvey, J. D.

Jeppesen, M.

Jopson, R. M.

Kumar, P.

Langford, N. K.

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, Nature 478, 360 (2011).
[CrossRef]

Levy, U.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, Nat. Commun. 4, 1548 (2013).
[CrossRef]

Londero, P.

K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, Phys. Rev. A 83, 033833 (2011).
[CrossRef]

V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, Phys. Rev. Lett. 107, 193902 (2011).
[CrossRef]

V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, Opt. Lett. 35, 2287 (2010).
[CrossRef]

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef]

Lvovsky, A. I.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, Nat. Photonics 3, 706 (2009).
[CrossRef]

F. Vewinger, J. Appel, E. Figueroa, and A. I. Lvovsky, Opt. Lett. 32, 2771 (2007).
[CrossRef]

Malcuit, M. S.

R. W. Boyd, M. S. Malcuit, and D. J. Gauthier, Phys. Rev. A 35, 1648 (1987).
[CrossRef]

M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, Phys. Rev. Lett. 55, 1086 (1985).
[CrossRef]

McGuinness, H. J.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, IEEE Photon. Technol. Lett. 23, 109 (2011).
[CrossRef]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, Phys. Rev. Lett. 105, 093604 (2010).
[CrossRef]

McKinstrie, C. J.

Méchin, D.

Meijer, T.

Milburn, G. J.

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, Nature 478, 360 (2011).
[CrossRef]

Munro, W. J.

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, Nature 478, 360 (2011).
[CrossRef]

Prevedel, R.

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, Nature 478, 360 (2011).
[CrossRef]

Provo, R.

Radic, S.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, IEEE Photon. Technol. Lett. 23, 109 (2011).
[CrossRef]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, Phys. Rev. Lett. 105, 093604 (2010).
[CrossRef]

C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, Opt. Express 13, 9131 (2005).
[CrossRef]

C. J. McKinstrie, S. Radic, and M. G. Raymer, Opt. Express 12, 5037 (2004).
[CrossRef]

Ramelow, S.

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, Nature 478, 360 (2011).
[CrossRef]

Raymer, M. G.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, IEEE Photon. Technol. Lett. 23, 109 (2011).
[CrossRef]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, Phys. Rev. Lett. 105, 093604 (2010).
[CrossRef]

C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, Opt. Express 13, 9131 (2005).
[CrossRef]

C. J. McKinstrie, S. Radic, and M. G. Raymer, Opt. Express 12, 5037 (2004).
[CrossRef]

Renshaw, C. K.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, and A. L. Gaeta, Phys. Rev. Lett 97, 023603 (2006).
[CrossRef]

Saha, K.

V. Venkataraman, K. Saha, and A. L. Gaeta, Nat. Photonics 7, 138 (2012).
[CrossRef]

V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, Phys. Rev. Lett. 107, 193902 (2011).
[CrossRef]

K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, Phys. Rev. A 83, 033833 (2011).
[CrossRef]

Sanders, B. C.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, Nat. Photonics 3, 706 (2009).
[CrossRef]

Scholten, R. E.

Slepkov, A. D.

V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, Opt. Lett. 35, 2287 (2010).
[CrossRef]

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef]

Smeets, B.

Srinivasan, K.

Stern, L.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, Nat. Commun. 4, 1548 (2013).
[CrossRef]

Tittel, W.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, Nat. Photonics 3, 706 (2009).
[CrossRef]

Venkataraman, V.

V. Venkataraman, K. Saha, and A. L. Gaeta, Nat. Photonics 7, 138 (2012).
[CrossRef]

K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, Phys. Rev. A 83, 033833 (2011).
[CrossRef]

V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, Phys. Rev. Lett. 107, 193902 (2011).
[CrossRef]

V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, Opt. Lett. 35, 2287 (2010).
[CrossRef]

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef]

Vewinger, F.

White, J. D.

Zeilinger, A.

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, Nature 478, 360 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, IEEE Photon. Technol. Lett. 23, 109 (2011).
[CrossRef]

Nat. Commun.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, Nat. Commun. 4, 1548 (2013).
[CrossRef]

Nat. Photonics

A. I. Lvovsky, B. C. Sanders, and W. Tittel, Nat. Photonics 3, 706 (2009).
[CrossRef]

V. Venkataraman, K. Saha, and A. L. Gaeta, Nat. Photonics 7, 138 (2012).
[CrossRef]

Nature

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, Nature 478, 360 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

R. W. Boyd, M. S. Malcuit, and D. J. Gauthier, Phys. Rev. A 35, 1648 (1987).
[CrossRef]

K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, Phys. Rev. A 83, 033833 (2011).
[CrossRef]

Phys. Rev. Lett

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, and A. L. Gaeta, Phys. Rev. Lett 97, 023603 (2006).
[CrossRef]

Phys. Rev. Lett.

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef]

V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, Phys. Rev. Lett. 107, 193902 (2011).
[CrossRef]

M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, Phys. Rev. Lett. 55, 1086 (1985).
[CrossRef]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, Phys. Rev. Lett. 105, 093604 (2010).
[CrossRef]

Other

R. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Rb85 level scheme used in the experiment. Pump beams at 780 and 795 nm are tuned to the D2 and D1 lines of Rb85, respectively. A signal beam at 776 nm is frequency translated to the idler at 762 nm.

Fig. 2.
Fig. 2.

Pump beams P1 and P2 and the signal are coupled into the PBGF in addition to the milliwatt-level vapor-generating beam at 805 nm. Both P1 and P2 are modulated using an AOM, set to a sawtooth waveform at 50 Hz. P1 is also modulated by a chopper at 25 Hz. As seen in the inset, the idler is generated only in the presence of both pump beams and the signal. The generated idler along with all other beams are separated using bandpass filters. The signal, idler, and pump P1 are then monitored on the oscilloscope.

Fig. 3.
Fig. 3.

Conversion efficiency of the generated idler (red squares) and the extinction percentage of the signal beam (blue triangles) plotted as functions of the detuning of pump field P2. Data were obtained with the power of pump waves P1 and P2 given by 300 and 310 μW, respectively.

Fig. 4.
Fig. 4.

TPA in the absence (red squares) and presence (blue triangles) of P1 is plotted as a function of detuning corresponding to P2. TPA is seen to be suppressed almost completely in the presence of both the pump beams indicating that BS-FWM is the dominant process.

Fig. 5.
Fig. 5.

Experimental curve (blue) and theoretical fit (red) for idler conversion efficiency as a function of pump power (P1 or P2). The idler power increases at first and then saturates because of TPA.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

χFWM(3)=Nμ1μ2μ3μ4/ϵ0Δ1Δ2Δ3,
χTPA,D1(3)=Nμ32μ42/ϵ0Δ32Δ2,
χTPA,D2(3)=Nμ12μ22/ϵ0Δ12Δ2,
γ=3πχFWM(3)/2Aλn02ϵ0c.
η=|κLsinc(|κ|2+δk2L)|2,
Aiz=4iγPAi+2iγPAsαPAi,
Asz=4iγPAs+2iγPAi,

Metrics