Abstract

We investigate the shielding effectiveness and complex conductivity of single-walled carbon nanotubes (SWNT) distributed in a polyvinyl alcohol (PVA) matrix in the THz frequency range. SWNTs are dispersed in PVA matrices with varying SWNT content (keeping the thickness of SWNT/PVA film constant) using a slow-drying method, and terahertz time-domain spectroscopy (THz-TDS) is performed at room temperature in transmission geometry in the frequency range of 0.3–2.1 THz. The transmittance spectra show a possible application of SWNT/PVA composites as low-bandpass filters in the THz frequency region. Shielding effectiveness of all the samples is measured, and, at a particular probing frequency, they tend to follow a linear relationship with SWNT weight fraction in the polymer matrices. THz conductivity of the composite system is described in the light of a.c. hopping conduction.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription