Abstract

We present an interferometric approach, referred to as interferometry with tripled-imaging area (ITIA), for tripling the quantitative information that can be collected in a single camera exposure while using off-axis interferometric imaging. ITIA enables optical multiplexing of three off-axis interferograms onto a single camera sensor without changing the imaging-system characteristics, such as magnification and spatial resolution, or losing temporal resolution (no scanning is involved). This approach is useful for many applications in which interferometric and holographic imaging are used. Our experimental demonstrations include quantitative phase microscopy of a transparent U.S. Air Force 1951 test target, thin diatom shells, and live human cancer cells.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative phase microscopy with off-axis optical coherence tomography

Matthew T. Rinehart, Volker Jaedicke, and Adam Wax
Opt. Lett. 39(7) 1996-1999 (2014)

Derivative method for phase retrieval in off-axis quantitative phase imaging

Basanta Bhaduri and Gabriel Popescu
Opt. Lett. 37(11) 1868-1870 (2012)

Off-axis digital holographic camera for quantitative phase microscopy

Zahra Monemhaghdoust, Frédéric Montfort, Yves Emery, Christian Depeursinge, and Christophe Moser
Biomed. Opt. Express 5(6) 1721-1730 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription