Abstract

We report the first experimental demonstration of a monolithically integrated hybrid dilated 2×2 modular optical switch using Mach–Zehnder modulators as low-loss 1×2 switching elements and short semiconductor optical amplifiers to provide additional extinction and gain. An excellent 40 dB cross-talk/extinction ratio is recorded with data-modulated signal-to-noise ratios of up to 44 dB in a 0.1 nm bandwidth. A switching time of 3 ns is demonstrated. Bit error rate studies show extremely low subsystem penalties of less than 0.1 dB, and studies indicate that, by using this hybrid switch building block, an 8×8 port switch could be achieved with 14 dB input power dynamic range for subsystem penalties of less than 0.5 dB.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Tucker, IEEE J. Sel. Top. Quantum Electron. 17, 261 (2011).
    [CrossRef]
  2. A. Wonfor, H. Wang, R. V. Penty, and I. H. White, J. Opt. Commun. Netw. 3, A32 (2011).
    [CrossRef]
  3. R. Stabile, A. Albores-Mejia, and K. A. Williams, Opt. Lett. 37, 4666 (2012).
    [CrossRef]
  4. D. H. P. Maat, Y. C. Zhu, F. H. Groen, H. van Brug, H. J. Frankena, and X. J. M. Leijtens, IEEE Photon. Technol. Lett. 12, 284 (2000).
  5. B. Lee and A. Rylyakov, in Optical Fiber Communication Conference (2013), paper PDP5C.3.
  6. A. Biberman and K. Bergman, Rep. Prog. Phys. 75, 046402 (2012).
    [CrossRef]
  7. T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, IEEE Photon. Technol. Lett. 15, 1300 (2003).
    [CrossRef]
  8. Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, J. Lightwave Technol. 31, 3077 (2013).
    [CrossRef]
  9. M. K. Smit, X. Leijtens, E. Bente, J. van der Tol, H. Ambrosius, D. Robbins, M. J. Wale, N. Grote, and M. Schell, in Optical Fiber Communication Conference (2012), paper OM3E.3.
  10. K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, F. Tobagi, and C. Diot, in IEEE INFOCOM (2002), Vol. 2, pp. 535–544.
  11. K. Wang, A. Wonfor, R. V. Penty, and I. H. White, in Optic Fiber Communication Conference (2012), paper OTh4F.4.

2013

2012

R. Stabile, A. Albores-Mejia, and K. A. Williams, Opt. Lett. 37, 4666 (2012).
[CrossRef]

A. Biberman and K. Bergman, Rep. Prog. Phys. 75, 046402 (2012).
[CrossRef]

2011

2003

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, IEEE Photon. Technol. Lett. 15, 1300 (2003).
[CrossRef]

2000

D. H. P. Maat, Y. C. Zhu, F. H. Groen, H. van Brug, H. J. Frankena, and X. J. M. Leijtens, IEEE Photon. Technol. Lett. 12, 284 (2000).

Albores-Mejia, A.

Ambrosius, H.

M. K. Smit, X. Leijtens, E. Bente, J. van der Tol, H. Ambrosius, D. Robbins, M. J. Wale, N. Grote, and M. Schell, in Optical Fiber Communication Conference (2012), paper OM3E.3.

Bente, E.

M. K. Smit, X. Leijtens, E. Bente, J. van der Tol, H. Ambrosius, D. Robbins, M. J. Wale, N. Grote, and M. Schell, in Optical Fiber Communication Conference (2012), paper OM3E.3.

Bergman, K.

A. Biberman and K. Bergman, Rep. Prog. Phys. 75, 046402 (2012).
[CrossRef]

Biberman, A.

A. Biberman and K. Bergman, Rep. Prog. Phys. 75, 046402 (2012).
[CrossRef]

Cheng, Q.

Diot, C.

K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, F. Tobagi, and C. Diot, in IEEE INFOCOM (2002), Vol. 2, pp. 535–544.

Fraleigh, C.

K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, F. Tobagi, and C. Diot, in IEEE INFOCOM (2002), Vol. 2, pp. 535–544.

Frankena, H. J.

D. H. P. Maat, Y. C. Zhu, F. H. Groen, H. van Brug, H. J. Frankena, and X. J. M. Leijtens, IEEE Photon. Technol. Lett. 12, 284 (2000).

Goh, T.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, IEEE Photon. Technol. Lett. 15, 1300 (2003).
[CrossRef]

Groen, F. H.

D. H. P. Maat, Y. C. Zhu, F. H. Groen, H. van Brug, H. J. Frankena, and X. J. M. Leijtens, IEEE Photon. Technol. Lett. 12, 284 (2000).

Grote, N.

M. K. Smit, X. Leijtens, E. Bente, J. van der Tol, H. Ambrosius, D. Robbins, M. J. Wale, N. Grote, and M. Schell, in Optical Fiber Communication Conference (2012), paper OM3E.3.

Hibino, Y.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, IEEE Photon. Technol. Lett. 15, 1300 (2003).
[CrossRef]

Himeno, A.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, IEEE Photon. Technol. Lett. 15, 1300 (2003).
[CrossRef]

Ishii, M.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, IEEE Photon. Technol. Lett. 15, 1300 (2003).
[CrossRef]

Itoh, M.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, IEEE Photon. Technol. Lett. 15, 1300 (2003).
[CrossRef]

Lee, B.

B. Lee and A. Rylyakov, in Optical Fiber Communication Conference (2013), paper PDP5C.3.

Leijtens, X.

M. K. Smit, X. Leijtens, E. Bente, J. van der Tol, H. Ambrosius, D. Robbins, M. J. Wale, N. Grote, and M. Schell, in Optical Fiber Communication Conference (2012), paper OM3E.3.

Leijtens, X. J. M.

D. H. P. Maat, Y. C. Zhu, F. H. Groen, H. van Brug, H. J. Frankena, and X. J. M. Leijtens, IEEE Photon. Technol. Lett. 12, 284 (2000).

Maat, D. H. P.

D. H. P. Maat, Y. C. Zhu, F. H. Groen, H. van Brug, H. J. Frankena, and X. J. M. Leijtens, IEEE Photon. Technol. Lett. 12, 284 (2000).

Moon, S.

K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, F. Tobagi, and C. Diot, in IEEE INFOCOM (2002), Vol. 2, pp. 535–544.

Okuno, M.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, IEEE Photon. Technol. Lett. 15, 1300 (2003).
[CrossRef]

Papagiannaki, K.

K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, F. Tobagi, and C. Diot, in IEEE INFOCOM (2002), Vol. 2, pp. 535–544.

Penty, R. V.

Robbins, D.

M. K. Smit, X. Leijtens, E. Bente, J. van der Tol, H. Ambrosius, D. Robbins, M. J. Wale, N. Grote, and M. Schell, in Optical Fiber Communication Conference (2012), paper OM3E.3.

Rylyakov, A.

B. Lee and A. Rylyakov, in Optical Fiber Communication Conference (2013), paper PDP5C.3.

Schell, M.

M. K. Smit, X. Leijtens, E. Bente, J. van der Tol, H. Ambrosius, D. Robbins, M. J. Wale, N. Grote, and M. Schell, in Optical Fiber Communication Conference (2012), paper OM3E.3.

Shibata, T.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, IEEE Photon. Technol. Lett. 15, 1300 (2003).
[CrossRef]

Smit, M. K.

M. K. Smit, X. Leijtens, E. Bente, J. van der Tol, H. Ambrosius, D. Robbins, M. J. Wale, N. Grote, and M. Schell, in Optical Fiber Communication Conference (2012), paper OM3E.3.

Stabile, R.

Sugita, A.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, IEEE Photon. Technol. Lett. 15, 1300 (2003).
[CrossRef]

Thiran, P.

K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, F. Tobagi, and C. Diot, in IEEE INFOCOM (2002), Vol. 2, pp. 535–544.

Tobagi, F.

K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, F. Tobagi, and C. Diot, in IEEE INFOCOM (2002), Vol. 2, pp. 535–544.

Tucker, R.

R. Tucker, IEEE J. Sel. Top. Quantum Electron. 17, 261 (2011).
[CrossRef]

van Brug, H.

D. H. P. Maat, Y. C. Zhu, F. H. Groen, H. van Brug, H. J. Frankena, and X. J. M. Leijtens, IEEE Photon. Technol. Lett. 12, 284 (2000).

van der Tol, J.

M. K. Smit, X. Leijtens, E. Bente, J. van der Tol, H. Ambrosius, D. Robbins, M. J. Wale, N. Grote, and M. Schell, in Optical Fiber Communication Conference (2012), paper OM3E.3.

Wale, M. J.

M. K. Smit, X. Leijtens, E. Bente, J. van der Tol, H. Ambrosius, D. Robbins, M. J. Wale, N. Grote, and M. Schell, in Optical Fiber Communication Conference (2012), paper OM3E.3.

Wang, H.

Wang, K.

K. Wang, A. Wonfor, R. V. Penty, and I. H. White, in Optic Fiber Communication Conference (2012), paper OTh4F.4.

Watanabe, T.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, IEEE Photon. Technol. Lett. 15, 1300 (2003).
[CrossRef]

White, I. H.

Williams, K. A.

Wonfor, A.

Yasu, M.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, IEEE Photon. Technol. Lett. 15, 1300 (2003).
[CrossRef]

Zhu, Y. C.

D. H. P. Maat, Y. C. Zhu, F. H. Groen, H. van Brug, H. J. Frankena, and X. J. M. Leijtens, IEEE Photon. Technol. Lett. 12, 284 (2000).

IEEE J. Sel. Top. Quantum Electron.

R. Tucker, IEEE J. Sel. Top. Quantum Electron. 17, 261 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

D. H. P. Maat, Y. C. Zhu, F. H. Groen, H. van Brug, H. J. Frankena, and X. J. M. Leijtens, IEEE Photon. Technol. Lett. 12, 284 (2000).

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, IEEE Photon. Technol. Lett. 15, 1300 (2003).
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun. Netw.

Opt. Lett.

Rep. Prog. Phys.

A. Biberman and K. Bergman, Rep. Prog. Phys. 75, 046402 (2012).
[CrossRef]

Other

B. Lee and A. Rylyakov, in Optical Fiber Communication Conference (2013), paper PDP5C.3.

M. K. Smit, X. Leijtens, E. Bente, J. van der Tol, H. Ambrosius, D. Robbins, M. J. Wale, N. Grote, and M. Schell, in Optical Fiber Communication Conference (2012), paper OM3E.3.

K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, F. Tobagi, and C. Diot, in IEEE INFOCOM (2002), Vol. 2, pp. 535–544.

K. Wang, A. Wonfor, R. V. Penty, and I. H. White, in Optic Fiber Communication Conference (2012), paper OTh4F.4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Operating principle of a hybrid MZI-SOA switch. Short SOAs are introduced after the outputs of the MZI.

Fig. 2.
Fig. 2.

(a) Photograph of the fabricated modular test chip, comprising two dilated 2×2 hybrid switches. (b) Schematic of the fabricated device.

Fig. 3.
Fig. 3.

(a) Switching curves of the enlarged single hybrid stage shown in Fig. 2(a). (b) For a 2×2 hybrid dilated switch, switching curves operating at 0 and 14 mA and operating states of the two output ports are marked. (c) Cross-talk test for 10 wavelengths.

Fig. 4.
Fig. 4.

(a) Switch operation with no impedance match on the phase modulators. Switching of 10Gb/s signal with (b) 3.3 ns rise time and (c) 3 ns fall time is achieved.

Fig. 5.
Fig. 5.

(a) IPDR curves for a 2×2 switch module in both single and 10 wavelengths. (b) IPDR curves for both 4×4 and 8×8 switch emulations.

Fig. 6.
Fig. 6.

Schematic of 4×4 and 8×8 switch built from afabricated building block, shown in the top. Experiment setup for the scalability test and eye diagrams to show the signal degradation when switch size scales up, shown in the bottom.

Tables (1)

Tables Icon

Table 1. Component-Level Loss Estimation at 1548.5 nm

Metrics