Abstract

We report on a time-resolved acousto-optic interaction technique for the detection of axial nonuniformities in single-mode fibers. It is based on the propagation of short packets of flexural acoustic waves. Small axial nonuniformities (of the order of nanometers) are detected by measuring the transmittance of the fundamental mode as a function of time. It is shown that the technique allows the detection of axial nonuniformities along sections of single-mode fiber exceeding 1 m long with spatial resolution of the order of a few centimeters.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, Opt. Lett. 11, 389 (1986).
    [CrossRef]
  2. T. A. Birks, P. S. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
    [CrossRef]
  3. K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, Appl. Phys. Lett. 92, 031110 (2008).
    [CrossRef]
  4. M. Bello-Jiménez, C. Cuadrado-Laborde, D. Sáez-Rodríguez, A. Diez, J. L. Cruz, and M. V. Andrés, Opt. Lett. 35, 3781 (2010).
    [CrossRef]
  5. M. Delgado-Pinar, A. Díez, J. L. Cruz, and M. V. Andrés, Appl. Phys. Lett. 90, 171110 (2007).
    [CrossRef]
  6. D. K. Serkland and P. Kumar, Opt. Lett. 24, 92 (1999).
    [CrossRef]
  7. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, Opt. Lett. 27, 1675 (2002).
    [CrossRef]
  8. J. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, Opt. Express 13, 534 (2005).
    [CrossRef]
  9. J. Brennan, in Optical Fiber Communication Conference (OFC, 2003), Vol. 2.
  10. P. di Vita and U. Rossi, Electron. Lett. 15, 467 (1979).
    [CrossRef]
  11. L. F. Mollenauer, P. V. Mamyshev, and M. J. Neubelt, Opt. Lett. 21, 1724 (1996).
    [CrossRef]
  12. K. Nakajima, M. Ohashi, and M. Tateda, J. Lightwave Technol. 15, 1095 (1997).
    [CrossRef]
  13. B. Langli, D. Östling, and K. Bløtekjær, J. Lightwave Technol. 16, 2443 (1998).
    [CrossRef]
  14. M. W. Haakestad and H. E. Engan, Opt. Express 14, 7319 (2006).
    [CrossRef]
  15. M. V. Andrés, M. J. Tudor, and K. W. H. Foulds, Electron. Lett. 23, 774 (1987).
    [CrossRef]
  16. H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
    [CrossRef]
  17. M. Sumetsky and Y. Dulashko, Opt. Lett. 35, 4006 (2010).
    [CrossRef]
  18. J. T. Krause, W. A. Reed, and K. L. Walker, J. Lightwave Technol. 4, 837 (1986).
    [CrossRef]

2010 (2)

2008 (1)

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, Appl. Phys. Lett. 92, 031110 (2008).
[CrossRef]

2007 (1)

M. Delgado-Pinar, A. Díez, J. L. Cruz, and M. V. Andrés, Appl. Phys. Lett. 90, 171110 (2007).
[CrossRef]

2006 (1)

2005 (1)

2002 (1)

1999 (1)

1998 (1)

1997 (1)

K. Nakajima, M. Ohashi, and M. Tateda, J. Lightwave Technol. 15, 1095 (1997).
[CrossRef]

1996 (2)

L. F. Mollenauer, P. V. Mamyshev, and M. J. Neubelt, Opt. Lett. 21, 1724 (1996).
[CrossRef]

T. A. Birks, P. S. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
[CrossRef]

1988 (1)

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

1987 (1)

M. V. Andrés, M. J. Tudor, and K. W. H. Foulds, Electron. Lett. 23, 774 (1987).
[CrossRef]

1986 (2)

J. T. Krause, W. A. Reed, and K. L. Walker, J. Lightwave Technol. 4, 837 (1986).
[CrossRef]

B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, Opt. Lett. 11, 389 (1986).
[CrossRef]

1979 (1)

P. di Vita and U. Rossi, Electron. Lett. 15, 467 (1979).
[CrossRef]

Andrés, M. V.

M. Bello-Jiménez, C. Cuadrado-Laborde, D. Sáez-Rodríguez, A. Diez, J. L. Cruz, and M. V. Andrés, Opt. Lett. 35, 3781 (2010).
[CrossRef]

M. Delgado-Pinar, A. Díez, J. L. Cruz, and M. V. Andrés, Appl. Phys. Lett. 90, 171110 (2007).
[CrossRef]

M. V. Andrés, M. J. Tudor, and K. W. H. Foulds, Electron. Lett. 23, 774 (1987).
[CrossRef]

Bello-Jiménez, M.

Birks, T. A.

T. A. Birks, P. S. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
[CrossRef]

Blake, J. N.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, Opt. Lett. 11, 389 (1986).
[CrossRef]

Bløtekjær, K.

Brennan, J.

J. Brennan, in Optical Fiber Communication Conference (OFC, 2003), Vol. 2.

Cruz, J. L.

Cuadrado-Laborde, C.

Culverhouse, D. O.

T. A. Birks, P. S. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
[CrossRef]

Delgado-Pinar, M.

M. Delgado-Pinar, A. Díez, J. L. Cruz, and M. V. Andrés, Appl. Phys. Lett. 90, 171110 (2007).
[CrossRef]

di Vita, P.

P. di Vita and U. Rossi, Electron. Lett. 15, 467 (1979).
[CrossRef]

Diez, A.

Díez, A.

M. Delgado-Pinar, A. Díez, J. L. Cruz, and M. V. Andrés, Appl. Phys. Lett. 90, 171110 (2007).
[CrossRef]

Dulashko, Y.

Duligall, J.

Engan, H. E.

Fiorentino, M.

Foulds, K. W. H.

M. V. Andrés, M. J. Tudor, and K. W. H. Foulds, Electron. Lett. 23, 774 (1987).
[CrossRef]

Fulconis, J.

Haakestad, M. W.

Hong, K. S.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, Appl. Phys. Lett. 92, 031110 (2008).
[CrossRef]

Hwang, I. K.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, Appl. Phys. Lett. 92, 031110 (2008).
[CrossRef]

Jin, W.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, Appl. Phys. Lett. 92, 031110 (2008).
[CrossRef]

Ju, J.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, Appl. Phys. Lett. 92, 031110 (2008).
[CrossRef]

Kim, B. Y.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, Appl. Phys. Lett. 92, 031110 (2008).
[CrossRef]

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, Opt. Lett. 11, 389 (1986).
[CrossRef]

Krause, J. T.

J. T. Krause, W. A. Reed, and K. L. Walker, J. Lightwave Technol. 4, 837 (1986).
[CrossRef]

Kumar, P.

Langli, B.

Mamyshev, P. V.

Mollenauer, L. F.

Nakajima, K.

K. Nakajima, M. Ohashi, and M. Tateda, J. Lightwave Technol. 15, 1095 (1997).
[CrossRef]

Neubelt, M. J.

Ohashi, M.

K. Nakajima, M. Ohashi, and M. Tateda, J. Lightwave Technol. 15, 1095 (1997).
[CrossRef]

Östling, D.

Park, H. C.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, Appl. Phys. Lett. 92, 031110 (2008).
[CrossRef]

Rarity, J.

Reed, W. A.

J. T. Krause, W. A. Reed, and K. L. Walker, J. Lightwave Technol. 4, 837 (1986).
[CrossRef]

Rossi, U.

P. di Vita and U. Rossi, Electron. Lett. 15, 467 (1979).
[CrossRef]

Russell, P. S.

T. A. Birks, P. S. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
[CrossRef]

Russell, P. St. J.

Sáez-Rodríguez, D.

Serkland, D. K.

Sharping, J. E.

Shaw, H. J.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, Opt. Lett. 11, 389 (1986).
[CrossRef]

Sumetsky, M.

Tateda, M.

K. Nakajima, M. Ohashi, and M. Tateda, J. Lightwave Technol. 15, 1095 (1997).
[CrossRef]

Tudor, M. J.

M. V. Andrés, M. J. Tudor, and K. W. H. Foulds, Electron. Lett. 23, 774 (1987).
[CrossRef]

Wadsworth, W. J.

Walker, K. L.

J. T. Krause, W. A. Reed, and K. L. Walker, J. Lightwave Technol. 4, 837 (1986).
[CrossRef]

Windeler, R. S.

Yeom, D. I.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, Appl. Phys. Lett. 92, 031110 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, Appl. Phys. Lett. 92, 031110 (2008).
[CrossRef]

M. Delgado-Pinar, A. Díez, J. L. Cruz, and M. V. Andrés, Appl. Phys. Lett. 90, 171110 (2007).
[CrossRef]

Electron. Lett. (2)

P. di Vita and U. Rossi, Electron. Lett. 15, 467 (1979).
[CrossRef]

M. V. Andrés, M. J. Tudor, and K. W. H. Foulds, Electron. Lett. 23, 774 (1987).
[CrossRef]

J. Lightwave Technol. (5)

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

J. T. Krause, W. A. Reed, and K. L. Walker, J. Lightwave Technol. 4, 837 (1986).
[CrossRef]

K. Nakajima, M. Ohashi, and M. Tateda, J. Lightwave Technol. 15, 1095 (1997).
[CrossRef]

B. Langli, D. Östling, and K. Bløtekjær, J. Lightwave Technol. 16, 2443 (1998).
[CrossRef]

T. A. Birks, P. S. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

Other (1)

J. Brennan, in Optical Fiber Communication Conference (OFC, 2003), Vol. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Experimental setup. TL, tunable laser; PC, polarization controller; PD, piezoelectric disk; AD, acoustic damper; D, optical detector; CF, coated fiber. (b) Instantaneous amplitude vibration of the fiber at a given point when an electric burst of 20 cycles of an RF signal of 2.1 MHz was applied to the PD.

Fig. 2.
Fig. 2.

(i) Transmittance trace recorded in the oscilloscope (solid line). Transmittance as a function of time calculated using Eq. (1) and the following parameter values: Leff=8.4cm, vg=2800m/s, κ0=12m1 (dashed line). (ii) Transmittance trace after the effect of the attenuation of the acoustic wave is corrected numerically (Tc) (solid line). Transmittance as a function of time calculated using Eq. (1) with α=0 (Tc0) (dotted line). Fiber length: 1.12 m.

Fig. 3.
Fig. 3.

Normalized transmittance difference calculated after the effect of the attenuation of the acoustic wave was corrected numerically. Right vertical axis indicates the square of the radius variation that would cause these transmittance fluctuations.

Fig. 4.
Fig. 4.

Transmittance trace recorded when the AO interaction region included a fiber fusion splice between identical fibers.

Fig. 5.
Fig. 5.

(a) Transmission spectrum evolution as the elastic wave packet propagates. Darker color indicates lower transmission. (b) Transmission spectrum at t=150μs (circles) and t=253μs (triangles). For more clarity, the effect of the elastic packet attenuation has been corrected.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

TR=1sin2(κ0·eα·vg·tLeff),
TC=1κ02κ02+δ2sin2(Leffκ02+δ2),
TC=TC0+(δκ0)2(1Tc0)[1κ0·Leff·cot(κ0·Leff)],
δδa|a0(aa0).
(aa0)2κ02[1κ0·Leff·cot(κ0·Leff)](TcTc01Tc0)(δa|a0)2.

Metrics