Abstract

A theory for nonreciprocal phase shift caused by cross coupling generated in a polarization maintaining (PM) fiber optic gyroscope (FOG) under the combined action of magnetic and temperature fields is proposed. The magnetic-thermal coupling in the FOG originates from the interaction of the magnetic field, fiber twist, birefringence caused by thermal stress, and the intrinsic and bending birefringence of the fiber. The cross coupling changes with temperature. When the PM fiber has a diameter of 250 μm, beat length of 3 mm, length of 500 m, twist rate of 1rad/m, and optical source wavelength of 1310 nm, the maximum degree of magnetic-thermal coupling generated by a 1 mT radial magnetic field within the temperature range of 20°Cto60°C is 5.47%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Lefevre, The Fiber-Optic Gyroscope (Artech House, 1993).
  2. K. Hotate and K. Tabe, Appl. Opt. 25, 1086 (1986).
    [CrossRef]
  3. O. Celikel and F. Sametoğlu, Meas. Sci. Technol. 23, 025104 (2012).
    [CrossRef]
  4. J. Blake, Proc. SPIE 1367, 81 (1990).
    [CrossRef]
  5. T. Saida and K. Hotate, J. Lightwave Technol. 17, 222 (1999).
    [CrossRef]
  6. J. M. Fini, Opt. Express 14, 69 (2006).
    [CrossRef]
  7. M. Karimi, T. Sun, and K. T. V. Grattan, IEEE Sens. J. 13, 4459 (2013).
    [CrossRef]
  8. R. Ulrich, Opt. Lett. 5, 173 (1980).
    [CrossRef]
  9. Y. Yang, Z. Wang, and Z. Li, Opt. Lett. 37, 2841 (2012).
    [CrossRef]

2013

M. Karimi, T. Sun, and K. T. V. Grattan, IEEE Sens. J. 13, 4459 (2013).
[CrossRef]

2012

Y. Yang, Z. Wang, and Z. Li, Opt. Lett. 37, 2841 (2012).
[CrossRef]

O. Celikel and F. Sametoğlu, Meas. Sci. Technol. 23, 025104 (2012).
[CrossRef]

2006

1999

1990

J. Blake, Proc. SPIE 1367, 81 (1990).
[CrossRef]

1986

1980

Blake, J.

J. Blake, Proc. SPIE 1367, 81 (1990).
[CrossRef]

Celikel, O.

O. Celikel and F. Sametoğlu, Meas. Sci. Technol. 23, 025104 (2012).
[CrossRef]

Fini, J. M.

Grattan, K. T. V.

M. Karimi, T. Sun, and K. T. V. Grattan, IEEE Sens. J. 13, 4459 (2013).
[CrossRef]

Hotate, K.

Karimi, M.

M. Karimi, T. Sun, and K. T. V. Grattan, IEEE Sens. J. 13, 4459 (2013).
[CrossRef]

Lefevre, H.

H. Lefevre, The Fiber-Optic Gyroscope (Artech House, 1993).

Li, Z.

Saida, T.

Sametoglu, F.

O. Celikel and F. Sametoğlu, Meas. Sci. Technol. 23, 025104 (2012).
[CrossRef]

Sun, T.

M. Karimi, T. Sun, and K. T. V. Grattan, IEEE Sens. J. 13, 4459 (2013).
[CrossRef]

Tabe, K.

Ulrich, R.

Wang, Z.

Yang, Y.

Appl. Opt.

IEEE Sens. J.

M. Karimi, T. Sun, and K. T. V. Grattan, IEEE Sens. J. 13, 4459 (2013).
[CrossRef]

J. Lightwave Technol.

Meas. Sci. Technol.

O. Celikel and F. Sametoğlu, Meas. Sci. Technol. 23, 025104 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

J. Blake, Proc. SPIE 1367, 81 (1990).
[CrossRef]

Other

H. Lefevre, The Fiber-Optic Gyroscope (Artech House, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

PM FOG system under magnetic-thermal action. Symbols are as follows: IOC, integrated optical chip; 0#, location of polarizer; 1# and 2#, port 1 and port 2 of the fiber coil; BR, magnetic field; and δz, length of each segment.

Fig. 2.
Fig. 2.

Half-cross-section of a fiber coil model with quadrupolar symmetry winding technique.

Fig. 3.
Fig. 3.

Model for finite element simulation. The average radius of the fiber coil is about 50 mm. The beneath heating source is closely connected to the aluminum skeleton.

Fig. 4.
Fig. 4.

Distribution of fiber birefringence in clockwise direction at different temperatures.

Fig. 5.
Fig. 5.

Simulation and experimental results of magnetic-thermal coupling of the FOG at different temperatures. The maximum degree of magnetic-thermal coupling generated by a 1 mT radial magnetic field within the temperature range of 20°Cto60°C is 5.47%.

Fig. 6.
Fig. 6.

Magnetic-thermal experimental system. The FOG was put in the chamber with a temperature control device with other components outside. The whole system was placed in a platform surrounded with a Helmholtz coil.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

uc,i=[cos(ηc,iδz)jΔβ(i)2ηc,isin(ηc,iδz)[φ(i)+ζ(i)]ηc,isin(ηc,iδz)[φ(i)+ζ(i)]ηc,isin(ηc,iδz)cos(ηc,iδz)+jΔβ(i)2ηc,isin(ηc,iδz)],
Uc=[1000]i=m10uc,i[1000].
ucc,i=[cos(ηcc,iδz)jΔβ(i)2ηcc,isin(ηcc,iδz)[φ(i)ζ(i)]ηcc,isin(ηcc,iδz)[φ(i)ζ(i)]ηcc,isin(ηcc,iδz)cos(ηcc,iδz)+jΔβ(i)2ηcc,isin(ηcc,iδz)],
Ucc=[1000]i=0m1ucc,i[1000].
ΔϕF,T=jtr(UcUccUcUcc)tr(UcUcc+UcUcc),
ΔϕFT=ΔϕF,TΔϕF,20.
kF,T=(ΔϕF,TΔϕF,20)/ΔϕF,20=ΔϕFT/ΔϕF,20.

Metrics