Abstract

Full-field optical coherence microscopy is an established optical technology based on low-coherence interference microscopy for high-resolution imaging of semitransparent samples. In this Letter, we demonstrate an extension of the technique using a visible to short-wavelength infrared camera and a halogen lamp to image in three distinct bands centered at 635, 870, and 1170 nm. Reflective microscope objectives are employed to minimize chromatic aberrations of the imaging system operating over a spectral range extending from 530 to 1700 nm. Constant 1.9-μm axial resolution (measured in air) is achieved in each of the three bands. A dynamic dispersion compensation system is set up to preserve the axial resolution when the imaging depth is varied. The images can be analyzed in the conventional RGB color channels representation to generate three-dimensional images with enhanced contrast. The capability of the system is illustrated by imaging different samples.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Vabre, A. Dubois, and A. C. Boccara, Opt. Lett. 27, 530 (2002).
    [CrossRef]
  2. B. Laude, A. De Martino, B. Drevillon, L. Benattar, and L. Schwartz, Appl. Opt. 41, 6637 (2002).
    [CrossRef]
  3. A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, Phys. Med. Biol. 49, 1227 (2004).
    [CrossRef]
  4. A. Dubois, J. Moreau, and C. Boccara, Opt. Express 16, 17082 (2008).
    [CrossRef]
  5. U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 25, 111 (2000).
    [CrossRef]
  6. C. Y. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, Opt. Lett. 31, 1079 (2006).
    [CrossRef]
  7. D. Sacchet, J. Moreau, P. Georges, and A. Dubois, Opt. Express 16, 19434 (2008).
    [CrossRef]
  8. F. Spoler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Forst, and H. Kurz, Opt. Express 15, 10832 (2007).
    [CrossRef]
  9. L. F. Yu and M. K. Kim, Opt. Express 12, 6632 (2004).
    [CrossRef]
  10. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, Appl. Opt. 41, 805 (2002).
    [CrossRef]
  11. A. Dubois, G. Moneron, and C. Boccara, Opt. Commun. 266, 738 (2006).
    [CrossRef]
  12. I. H. Malitson, J. Opt. Soc. Am. 55, 1205 (1965).
    [CrossRef]
  13. H. Liang, R. Lange, B. Peric, and M. Spring, Appl. Phys. B 26, 1 (2013).
  14. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, Phys. Med. Biol. 43, 2465 (1998).
    [CrossRef]

2013 (1)

H. Liang, R. Lange, B. Peric, and M. Spring, Appl. Phys. B 26, 1 (2013).

2008 (2)

2007 (1)

2006 (2)

2004 (2)

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, Phys. Med. Biol. 49, 1227 (2004).
[CrossRef]

L. F. Yu and M. K. Kim, Opt. Express 12, 6632 (2004).
[CrossRef]

2002 (3)

2000 (1)

1998 (1)

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, Phys. Med. Biol. 43, 2465 (1998).
[CrossRef]

1965 (1)

Beaurepaire, E.

Benattar, L.

Boccara, A. C.

Boccara, C.

A. Dubois, J. Moreau, and C. Boccara, Opt. Express 16, 17082 (2008).
[CrossRef]

A. Dubois, G. Moneron, and C. Boccara, Opt. Commun. 266, 738 (2006).
[CrossRef]

Boppart, S. A.

Bornemann, J.

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, Phys. Med. Biol. 43, 2465 (1998).
[CrossRef]

De Martino, A.

Drevillon, B.

Drexler, W.

Dubois, A.

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, Phys. Med. Biol. 43, 2465 (1998).
[CrossRef]

Forst, M.

Fujimoto, J. G.

Georges, P.

Grieve, K.

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, Phys. Med. Biol. 49, 1227 (2004).
[CrossRef]

Grychtol, P.

Hermes, B.

Ippen, E. P.

Kartner, F. X.

Kim, M. K.

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, Phys. Med. Biol. 43, 2465 (1998).
[CrossRef]

Kray, S.

Kurz, H.

Lange, R.

H. Liang, R. Lange, B. Peric, and M. Spring, Appl. Phys. B 26, 1 (2013).

Laude, B.

Li, X. D.

Liang, H.

H. Liang, R. Lange, B. Peric, and M. Spring, Appl. Phys. B 26, 1 (2013).

Luo, W.

Malitson, I. H.

Moneron, G.

A. Dubois, G. Moneron, and C. Boccara, Opt. Commun. 266, 738 (2006).
[CrossRef]

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, Phys. Med. Biol. 49, 1227 (2004).
[CrossRef]

Moreau, J.

Morgner, U.

Peric, B.

H. Liang, R. Lange, B. Peric, and M. Spring, Appl. Phys. B 26, 1 (2013).

Pitris, C.

Ralston, T. S.

Sacchet, D.

Schwartz, L.

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, Phys. Med. Biol. 43, 2465 (1998).
[CrossRef]

Spoler, F.

Spring, M.

H. Liang, R. Lange, B. Peric, and M. Spring, Appl. Phys. B 26, 1 (2013).

Tan, W.

Vabre, L.

Vinegoni, C.

Xu, C. Y.

Yu, L. F.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental achromatic setup. AD, aperture diaphragm; FD, field diaphragm; BS, beam splitter; DCP, dispersion compensation plate; RMO, reflective microscope objective; PZT, piezoelectric transducer; L1, lens; L2, tube lenses (doublets); FW, filter wheels.

Fig. 2.
Fig. 2.

(a) Camera, quantum efficiency (in electron/photons) provided by the manufacturer. (b) Experimental power spectral densities of the three bands (blue=band1, green=band2, red=band3).

Fig. 3.
Fig. 3.

Evolution of the optical path length difference d, with respect to δθ in band 1 (blue), band 2 (green), and band 3 (red). Experimental data and polynomial fits are displayed.

Fig. 4.
Fig. 4.

Interferograms measured in (a) band 1, (b) band 2, and (c) band 3.

Fig. 5.
Fig. 5.

xz sections of a partially painted wood sample with Prussian blue and Cerulean blue oil paintings in (a) band 1, (b) band, 2, (c) band 3, and (d) with RGB representation. (e), (f) Cuts along the z axis of the RGB image intensity at the pigment locations. The positions of the cuts are indicated by yellow (e), and white (f) arrows in the RGB image (d). The scale bar is 50 μm along the x axis and 10 μm along the z axis.

Fig. 6.
Fig. 6.

xz sections of (a) a light and (b) a dark human hair. From left to right: in band 1, band 2, band 3, and with RGB representation. The scale bar is 20 μm in the two directions.

Tables (1)

Tables Icon

Table 1. Features and Experimental Performances in the Three Bands

Metrics