Abstract

Whispering gallery mode microcavities are ideally suited to form microlaser devices because the high circulating intensity within the cavity results in ultralow lasing thresholds. However, to achieve low-threshold Raman lasing in silica devices, it is necessary to have quality factors above 100 million. One approach to circumvent this restriction is to intercalate a sensitizer into the silica, which increases the Raman gain. In the present work, we demonstrate a Raman laser based on a titanium sensitized silica solgel coated toroidal microcavity. By tuning the concentration of the Ti, the Raman efficiency improves over 3× while maintaining sub-mW thresholds.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
    [CrossRef]
  2. M. Chistiakova and A. M. Armani, Opt. Lett. 37, 4068 (2012).
    [CrossRef]
  3. I. S. Grudinin and L. Maleki, Opt. Lett. 32, 166 (2007).
    [CrossRef]
  4. B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, Opt. Lett. 38, 1802 (2013).
    [CrossRef]
  5. S.-X. Qian and R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
    [CrossRef]
  6. H.-B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
    [CrossRef]
  7. V. Sandoghdar, F. Treussart, J. Hare, V. LefevreSeguin, J. M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
    [CrossRef]
  8. W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B 2, 204 (2000).
    [CrossRef]
  9. T. Grossmann, S. Klinkhammer, M. Hauser, D. Floess, T. Beck, C. Vannahme, T. Mappes, U. Lemmer, and H. Kalt, Opt. Express 19, 10009 (2011).
    [CrossRef]
  10. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, Phys. Rev. A 85, 023830 (2012).
    [CrossRef]
  11. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2009).
    [CrossRef]
  12. H. S. Hsu, C. Cai, and A. M. Armani, Opt. Express 17, 23265 (2009).
    [CrossRef]
  13. S. R. Chinn and V. King, IEEE J. Quantum Electron. 42, 1128 (2006).
    [CrossRef]
  14. A. J. Maker and A. M. Armani, Opt. Express 21, 27238 (2013).
    [CrossRef]
  15. L. A. Farrow and E. M. Vogel, J. Non-Cryst. Solids 143, 59 (1992).
    [CrossRef]
  16. G. Dai, F. Tassone, A. L. Bassi, V. Russo, C. E. Bottani, and F. D’Amore, IEEE Photon. Technol. Lett. 16, 1011 (2004).
  17. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
    [CrossRef]
  18. B. A. Rose, A. J. Maker, and A. M. Armani, Opt. Mater. Express 2, 671 (2012).
    [CrossRef]
  19. A. J. Maker, B. A. Rose, and A. M. Armani, Opt. Lett. 37, 2844 (2012).
    [CrossRef]
  20. P. Colomban and A. Slodczyk, Acta Phys. Pol. A 116, 7 (2009).
  21. B. Min, T. J. Kippenberg, and K. J. Vahala, Opt. Lett. 28, 1507 (2003).
    [CrossRef]
  22. M. I. Cheema and A. G. Kirk, in COMSOL Conference, Boston, Massachusetts (2010).
  23. M. Oxborrow, Proc. SPIE 6452, J4520 (2007).
  24. M. Cheema and A. Kirk, Opt. Express 21, 8724 (2013).
    [CrossRef]
  25. H.-S. Choi, X. Zhang, and A. M. Armani, Opt. Lett. 35, 459 (2010).
    [CrossRef]
  26. L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
    [CrossRef]
  27. A. E. Siegman, Lasers, 1st ed. (University Science Books, 1986), p. 1283.

2013 (3)

2012 (4)

2011 (2)

T. Grossmann, S. Klinkhammer, M. Hauser, D. Floess, T. Beck, C. Vannahme, T. Mappes, U. Lemmer, and H. Kalt, Opt. Express 19, 10009 (2011).
[CrossRef]

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

2010 (1)

2009 (3)

P. Colomban and A. Slodczyk, Acta Phys. Pol. A 116, 7 (2009).

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2009).
[CrossRef]

H. S. Hsu, C. Cai, and A. M. Armani, Opt. Express 17, 23265 (2009).
[CrossRef]

2007 (2)

I. S. Grudinin and L. Maleki, Opt. Lett. 32, 166 (2007).
[CrossRef]

M. Oxborrow, Proc. SPIE 6452, J4520 (2007).

2006 (1)

S. R. Chinn and V. King, IEEE J. Quantum Electron. 42, 1128 (2006).
[CrossRef]

2004 (1)

G. Dai, F. Tassone, A. L. Bassi, V. Russo, C. E. Bottani, and F. D’Amore, IEEE Photon. Technol. Lett. 16, 1011 (2004).

2003 (2)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

B. Min, T. J. Kippenberg, and K. J. Vahala, Opt. Lett. 28, 1507 (2003).
[CrossRef]

2002 (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef]

2000 (1)

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B 2, 204 (2000).
[CrossRef]

1996 (1)

V. Sandoghdar, F. Treussart, J. Hare, V. LefevreSeguin, J. M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

1994 (1)

H.-B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[CrossRef]

1992 (1)

L. A. Farrow and E. M. Vogel, J. Non-Cryst. Solids 143, 59 (1992).
[CrossRef]

1986 (1)

S.-X. Qian and R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef]

Armani, A. M.

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

Bassi, A. L.

G. Dai, F. Tassone, A. L. Bassi, V. Russo, C. E. Bottani, and F. D’Amore, IEEE Photon. Technol. Lett. 16, 1011 (2004).

Beck, T.

Bottani, C. E.

G. Dai, F. Tassone, A. L. Bassi, V. Russo, C. E. Bottani, and F. D’Amore, IEEE Photon. Technol. Lett. 16, 1011 (2004).

Cai, C.

Campillo, A. J.

H.-B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[CrossRef]

Chang, R. K.

S.-X. Qian and R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef]

Cheema, M.

Cheema, M. I.

M. I. Cheema and A. G. Kirk, in COMSOL Conference, Boston, Massachusetts (2010).

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2009).
[CrossRef]

Chinn, S. R.

S. R. Chinn and V. King, IEEE J. Quantum Electron. 42, 1128 (2006).
[CrossRef]

Chistiakova, M.

Choi, H. S.

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

Choi, H.-S.

Clements, W. R.

Colomban, P.

P. Colomban and A. Slodczyk, Acta Phys. Pol. A 116, 7 (2009).

D’Amore, F.

G. Dai, F. Tassone, A. L. Bassi, V. Russo, C. E. Bottani, and F. D’Amore, IEEE Photon. Technol. Lett. 16, 1011 (2004).

Dai, G.

G. Dai, F. Tassone, A. L. Bassi, V. Russo, C. E. Bottani, and F. D’Amore, IEEE Photon. Technol. Lett. 16, 1011 (2004).

Dayani, Y.

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

Farrow, L. A.

L. A. Farrow and E. M. Vogel, J. Non-Cryst. Solids 143, 59 (1992).
[CrossRef]

Floess, D.

Freeman, L. M.

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

Gong, Q.

Grossmann, T.

Grudinin, I. S.

Hare, J.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B 2, 204 (2000).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. LefevreSeguin, J. M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

Haroche, S.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B 2, 204 (2000).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. LefevreSeguin, J. M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

Hauser, M.

He, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2009).
[CrossRef]

Hsu, H. S.

Ilchenko, V. S.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, Phys. Rev. A 85, 023830 (2012).
[CrossRef]

Jahier, E.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B 2, 204 (2000).
[CrossRef]

Kalt, H.

King, V.

S. R. Chinn and V. King, IEEE J. Quantum Electron. 42, 1128 (2006).
[CrossRef]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

B. Min, T. J. Kippenberg, and K. J. Vahala, Opt. Lett. 28, 1507 (2003).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef]

Kirk, A.

Kirk, A. G.

M. I. Cheema and A. G. Kirk, in COMSOL Conference, Boston, Massachusetts (2010).

Klinkhammer, S.

LefevreSeguin, V.

V. Sandoghdar, F. Treussart, J. Hare, V. LefevreSeguin, J. M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

Lefevre-Seguin, V.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B 2, 204 (2000).
[CrossRef]

Lemmer, U.

Li, B.-B.

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2009).
[CrossRef]

Li, S.

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

Lin, H.-B.

H.-B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[CrossRef]

Lissillour, F.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B 2, 204 (2000).
[CrossRef]

Long, R.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B 2, 204 (2000).
[CrossRef]

Maker, A. J.

Maleki, L.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, Phys. Rev. A 85, 023830 (2012).
[CrossRef]

I. S. Grudinin and L. Maleki, Opt. Lett. 32, 166 (2007).
[CrossRef]

Malmstadt, N.

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

Mappes, T.

Matsko, A. B.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, Phys. Rev. A 85, 023830 (2012).
[CrossRef]

Min, B.

Oxborrow, M.

M. Oxborrow, Proc. SPIE 6452, J4520 (2007).

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2009).
[CrossRef]

Qian, S.-X.

S.-X. Qian and R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef]

Raimond, J. M.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B 2, 204 (2000).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. LefevreSeguin, J. M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

Rose, B. A.

Russo, V.

G. Dai, F. Tassone, A. L. Bassi, V. Russo, C. E. Bottani, and F. D’Amore, IEEE Photon. Technol. Lett. 16, 1011 (2004).

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. LefevreSeguin, J. M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

Savchenkov, A. A.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, Phys. Rev. A 85, 023830 (2012).
[CrossRef]

Seidel, D.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, Phys. Rev. A 85, 023830 (2012).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers, 1st ed. (University Science Books, 1986), p. 1283.

Slodczyk, A.

P. Colomban and A. Slodczyk, Acta Phys. Pol. A 116, 7 (2009).

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef]

Tassone, F.

G. Dai, F. Tassone, A. L. Bassi, V. Russo, C. E. Bottani, and F. D’Amore, IEEE Photon. Technol. Lett. 16, 1011 (2004).

Treussart, F.

V. Sandoghdar, F. Treussart, J. Hare, V. LefevreSeguin, J. M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

B. Min, T. J. Kippenberg, and K. J. Vahala, Opt. Lett. 28, 1507 (2003).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef]

Vannahme, C.

Vogel, E. M.

L. A. Farrow and E. M. Vogel, J. Non-Cryst. Solids 143, 59 (1992).
[CrossRef]

von Klitzing, W.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B 2, 204 (2000).
[CrossRef]

Xiao, Y.-F.

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, Opt. Lett. 38, 1802 (2013).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2009).
[CrossRef]

Yan, M.-Y.

Yang, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2009).
[CrossRef]

Zhang, X.

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2009).
[CrossRef]

Acta Phys. Pol. A (1)

P. Colomban and A. Slodczyk, Acta Phys. Pol. A 116, 7 (2009).

Appl. Phys. Lett. (1)

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. R. Chinn and V. King, IEEE J. Quantum Electron. 42, 1128 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Dai, F. Tassone, A. L. Bassi, V. Russo, C. E. Bottani, and F. D’Amore, IEEE Photon. Technol. Lett. 16, 1011 (2004).

J. Non-Cryst. Solids (1)

L. A. Farrow and E. M. Vogel, J. Non-Cryst. Solids 143, 59 (1992).
[CrossRef]

J. Opt. B (1)

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B 2, 204 (2000).
[CrossRef]

Nat. Photonics (1)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2009).
[CrossRef]

Nature (2)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Opt. Mater. Express (1)

Phys. Rev. A (2)

V. Sandoghdar, F. Treussart, J. Hare, V. LefevreSeguin, J. M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, Phys. Rev. A 85, 023830 (2012).
[CrossRef]

Phys. Rev. Lett. (2)

S.-X. Qian and R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef]

H.-B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[CrossRef]

Proc. SPIE (1)

M. Oxborrow, Proc. SPIE 6452, J4520 (2007).

Other (2)

A. E. Siegman, Lasers, 1st ed. (University Science Books, 1986), p. 1283.

M. I. Cheema and A. G. Kirk, in COMSOL Conference, Boston, Massachusetts (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Solgel-coated toroidal optical cavity. (a) Rendering of toroidal optical microcavity, indicating the location of the Ti-silica coating and optical field. (b) Scanning electron micrograph of the solgel-coated toroidal microcavity.

Fig. 2.
Fig. 2.

FEM simulations and analysis. The percentage of light in the film increases as the refractive index or Ti concentration increases. Upper left inset: FEM model of toroidal cavity with 10 mol. % Ti. Lower right inset: optical mode volume (Vm) as a function of refractive index. As the refractive index increases, the optical field moves into the film, and the total mode volume decreases, resulting in a greater fraction of the optical field residing in the film.

Fig. 3.
Fig. 3.

Output emission spectra and lasing thresholds. In both spectra, the 765 nm pump wavelength is shown. (a) Output emission spectra for device coated with 10 mol. % Ti, with lasing peak centered at 796 nm. The inset shows a normalized threshold graph, indicating a threshold value of 117 μW. (b) Cascaded Raman generated by device coated with 10 mol. % Ti. The pump generates lasing at 796 nm, which pumps a cascaded Raman peak at 824 nm. Since the free spectral range of the microlaser is 4nm, multiple peaks can appear in each cascade, such as the pair near 800 nm.

Fig. 4.
Fig. 4.

Lasing efficiency and lasing threshold (inset) as a function of Ti concentration. The lasing efficiency increases as the mol. % of Ti increases. The lasing thresholds are lower with the addition of Ti, when compared to the silica device with a titanium-free coating. The error bars in the inset are smaller than the symbols.

Metrics