Abstract

A uniform Fermi level profile is typically assumed in the analysis of a gated graphene nanoribbon, whose Fermi level is actually nonuniform in the experimental measurements. Here, we show that the uniform Fermi level has to be downshifted when it is used to analyze a backgated graphene nanoribbon array (GNRA). The plasmonic extinction behaviors of the GNRAs are perfectly preserved by assuming properly scaled uniform Fermi levels. The scaling factor is independent of the average value of the actual Fermi level profile, but it is a function of the ratio of the nanoribbon width to the distance of the nanoribbons from the backgate. This study facilitates the data postprocessing in the experiments, and may be helpful for analyzing the electron behaviors in GNRAs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Localized plasmonic field enhancement in shaped graphene nanoribbons

Sheng-Xuan Xia, Xiang Zhai, Ling-Ling Wang, Qi Lin, and Shuang-Chun Wen
Opt. Express 24(15) 16336-16348 (2016)

Plasmonic bandpass filter based on graphene nanoribbon

Huawei Zhuang, Fanmin Kong, Kang Li, and Shiwei Sheng
Appl. Opt. 54(10) 2558-2564 (2015)

Excitation of surface plasmons in sinusoidally shaped graphene nanoribbons

Sheng-Xuan Xia, Xiang Zhai, Ling-Ling Wang, Gui-Dong Liu, and Shuang-Chun Wen
J. Opt. Soc. Am. B 33(10) 2129-2134 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription