Abstract

We present first results in applying the thin-disk concept to lasers directly emitting in the visible spectral range. The pump light was provided by 24 InGaN laser diodes emitting 1 W each at 444 nm, which were coupled into a 200 μm fiber. A 300 μm thin Pr3+,Mg2+:SrAl12O19 crystal served as gain medium. In continuous-wave operation an output power of 0.88 W and a slope efficiency of 12% with respect to the absorbed pump power were achieved at an emission wavelength of 643.5 nm. Modulating the pump source at a duty cycle of 10% yielded an instantaneous output power of 1.67 W, corresponding to a slope efficiency of 26%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Gün, P. Metz, and G. Huber, Opt. Lett. 36, 1002 (2011).
    [CrossRef]
  2. F. Reichert, D.-T. Marzahl, P. Metz, M. Fechner, N.-O. Hansen, and G. Huber, Opt. Lett. 37, 4889 (2012).
    [CrossRef]
  3. F. Reichert, T. Calmano, S. Müller, D.-T. Marzahl, P. W. Metz, and G. Huber, Opt. Lett. 38, 2698 (2013).
    [CrossRef]
  4. M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, Appl. Phys. B 102, 731 (2011).
    [CrossRef]
  5. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994).
    [CrossRef]
  6. Y. H. Peng, Y. X. Lim, J. Cheng, Y. Guo, Y. Y. Cheah, and K. S. Lai, Opt. Lett. 38, 1709 (2013).
    [CrossRef]
  7. T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, Proc. SPIE 8547, 85470C (2012).
  8. B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, Opt. Lett. 37, 3045 (2012).
    [CrossRef]
  9. S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and Th. Graf, Opt. Lett. 37, 5033 (2012).
    [CrossRef]
  10. J. Hegarty, D. L. Huber, and W. M. Yen, Phys. Rev. B 25, 5638 (1982).

2013 (2)

2012 (4)

2011 (2)

T. Gün, P. Metz, and G. Huber, Opt. Lett. 36, 1002 (2011).
[CrossRef]

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, Appl. Phys. B 102, 731 (2011).
[CrossRef]

1994 (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994).
[CrossRef]

1982 (1)

J. Hegarty, D. L. Huber, and W. M. Yen, Phys. Rev. B 25, 5638 (1982).

Ahmed, M. A.

Bauer, D.

T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, Proc. SPIE 8547, 85470C (2012).

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994).
[CrossRef]

Calmano, T.

Cheah, Y. Y.

Cheng, J.

Fechner, M.

F. Reichert, D.-T. Marzahl, P. Metz, M. Fechner, N.-O. Hansen, and G. Huber, Opt. Lett. 37, 4889 (2012).
[CrossRef]

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, Appl. Phys. B 102, 731 (2011).
[CrossRef]

Giesen, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994).
[CrossRef]

Gottwald, T.

T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, Proc. SPIE 8547, 85470C (2012).

Graf, T.

Graf, Th.

Gün, T.

Guo, Y.

Hansen, N.-O.

F. Reichert, D.-T. Marzahl, P. Metz, M. Fechner, N.-O. Hansen, and G. Huber, Opt. Lett. 37, 4889 (2012).
[CrossRef]

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, Appl. Phys. B 102, 731 (2011).
[CrossRef]

Hegarty, J.

J. Hegarty, D. L. Huber, and W. M. Yen, Phys. Rev. B 25, 5638 (1982).

Huber, D. L.

J. Hegarty, D. L. Huber, and W. M. Yen, Phys. Rev. B 25, 5638 (1982).

Huber, G.

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994).
[CrossRef]

Killi, A.

T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, Proc. SPIE 8547, 85470C (2012).

Kleinbauer, J.

T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, Proc. SPIE 8547, 85470C (2012).

Kuhn, V.

T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, Proc. SPIE 8547, 85470C (2012).

Lai, K. S.

Lim, Y. X.

Marzahl, D.-T.

Metz, P.

Metz, P. W.

Metzger, T.

T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, Proc. SPIE 8547, 85470C (2012).

Müller, S.

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994).
[CrossRef]

Peng, Y. H.

Petermann, K.

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, Appl. Phys. B 102, 731 (2011).
[CrossRef]

Piehler, S.

Reichert, F.

Schad, S.

T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, Proc. SPIE 8547, 85470C (2012).

Stolzenburg, C.

T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, Proc. SPIE 8547, 85470C (2012).

Sutter, D.

T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, Proc. SPIE 8547, 85470C (2012).

Voss, A.

Weichelt, B.

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994).
[CrossRef]

Yen, W. M.

J. Hegarty, D. L. Huber, and W. M. Yen, Phys. Rev. B 25, 5638 (1982).

Appl. Phys. B (2)

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, Appl. Phys. B 102, 731 (2011).
[CrossRef]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. B (1)

J. Hegarty, D. L. Huber, and W. M. Yen, Phys. Rev. B 25, 5638 (1982).

Proc. SPIE (1)

T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, Proc. SPIE 8547, 85470C (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Setup for 48 passes of the pump beam through the crystal. The collimated beam enters at position no. 1 and is focused onto the laser crystal by the parabolic mirror. The residual beam reflected off the high-reflective (HR)-coated rear side of the crystal is recollimated by the parabolic mirror at position no. 2 and displaced to position no. 3 by one of the folding mirror pairs. This sequence is repeated six times until position no. 12 is reached. Here the beam is shifted outward to position no. 13 by a 180° prism. Starting from this position it passes the same way, now on the outer ring, in reverse order until position no. 24 is reached. Here a flat mirror redirects the beam back onto the same path. For the sake of clarity, in the 3D view (left side) only the path from no. 1 to no. 12 is shown.

Fig. 2.
Fig. 2.

Power characteristics of the Pr,Mg:SRA thin-disk laser in cw operation on the P03F32 transition at 643.5 nm with different pump spot sizes and output coupler transmissions.

Fig. 3.
Fig. 3.

Characteristic curves of the Pr,Mg:SRA thin-disk laser in modulated operation with 10% and 85% duty cycle. The power values shown are calculated from the measured average powers by dividing them by the duty cycle.

Fig. 4.
Fig. 4.

Measured temperatures of the pumped area on the uncooled front surface of the laser crystal versus the absorbed pump power for different output coupler transmissions.

Fig. 5.
Fig. 5.

Photograph of the Pr,Mg:SrAl12O19 disk showing the striae as described in the text.

Metrics