Abstract

Unlike traditional focalization that recruits multiple moving lens elements to adjust focus, liquid lenses deliver adaptive focusing by simply tuning the surface profile of liquid or the elastomer that encloses liquid. Its simple and compact configuration, low cost, and actuation efficiency promise wide industrial, medical, and consumer applications. Dielectric elastomers (DEs), one type of commercially available soft active material, have been a good fit for creating adaptive optics. In this Letter, we present an adaptive, membrane-sealed liquid lens hydrostatically coupled to a concentric annular DE actuator. Electric actuation deforms the annular DE, which induces fluid transmission between the lens part and the actuation part for lens actuation. The maximum measured focal range was from 25.4 to 105.2 mm within 1.0 kV, which significantly outperforms the existing DE-actuated liquid lenses and eliminates the need for prestraining. The lens also enables varied focal ranges by simply adjusting its initial surface sagitta, providing flexibility for practical imaging applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Laikin, Lens Design, 4th ed. (CRC Press, 2007).
  2. H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).
  3. D. Graham-Rowe, Nat. Photonics sample, 2 (2006).
    [CrossRef]
  4. N.-T. Nguyen, Biomicrofluidics 4, 031501 (2010).
    [CrossRef]
  5. B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
    [CrossRef]
  6. H. Ren, H. Xianyu, S. Xu, and S.-T. Wu, Opt. Express 16, 14954 (2008).
    [CrossRef]
  7. W. Xiao and S. Hardt, J. Micromech. Microeng. 20, 055032 (2010).
    [CrossRef]
  8. C. A. López, C.-C. Lee, and A. H. Hirsa, Appl. Phys. Lett. 87, 134102 (2005).
    [CrossRef]
  9. C. A. López and A. H. Hirsa, Nat. Photonics 2, 610 (2008).
    [CrossRef]
  10. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, Nature 442, 551 (2006).
    [CrossRef]
  11. K. Wei and Y. Zhao, in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2013), pp. 133–136.
  12. S. W. Lee and S. S. Lee, Appl. Phys. Lett. 90, 121129 (2007).
    [CrossRef]
  13. S. T. Choi, J. Y. Lee, J. O. Kwon, S. Lee, and W. Kim, Opt. Lett. 36, 1920 (2011).
    [CrossRef]
  14. P. Brochu and Q. Pei, Macromol. Rapid Commun. 31, 10 (2010).
    [CrossRef]
  15. F. Carpi, G. Frediani, S. Turco, and D. De Rossi, Adv. Funct. Mater. 21, 4152 (2011).
    [CrossRef]
  16. M. Niklaus, S. Rosset, and H. Shea, Proc. SPIE 7642, 76422K (2010).
    [CrossRef]
  17. S.-i. Son, D. Pugal, T. Hwang, H. R. Choi, J. C. Koo, Y. Lee, K. Kim, and J.-D. Nam, Appl. Opt. 51, 2987 (2012).
    [CrossRef]
  18. S. Shian, R. M. Diebold, and D. R. Clarke, Opt. Express 21, 8669 (2013).
    [CrossRef]
  19. J. A. Collins, H. R. Busby, and G. H. Staab, Mechanical Design of Machine Elements and Machines (Wiley, 2009).

2013 (1)

2012 (1)

2011 (2)

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, Adv. Funct. Mater. 21, 4152 (2011).
[CrossRef]

S. T. Choi, J. Y. Lee, J. O. Kwon, S. Lee, and W. Kim, Opt. Lett. 36, 1920 (2011).
[CrossRef]

2010 (4)

P. Brochu and Q. Pei, Macromol. Rapid Commun. 31, 10 (2010).
[CrossRef]

M. Niklaus, S. Rosset, and H. Shea, Proc. SPIE 7642, 76422K (2010).
[CrossRef]

N.-T. Nguyen, Biomicrofluidics 4, 031501 (2010).
[CrossRef]

W. Xiao and S. Hardt, J. Micromech. Microeng. 20, 055032 (2010).
[CrossRef]

2008 (2)

C. A. López and A. H. Hirsa, Nat. Photonics 2, 610 (2008).
[CrossRef]

H. Ren, H. Xianyu, S. Xu, and S.-T. Wu, Opt. Express 16, 14954 (2008).
[CrossRef]

2007 (1)

S. W. Lee and S. S. Lee, Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

2006 (2)

D. Graham-Rowe, Nat. Photonics sample, 2 (2006).
[CrossRef]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, Nature 442, 551 (2006).
[CrossRef]

2005 (1)

C. A. López, C.-C. Lee, and A. H. Hirsa, Appl. Phys. Lett. 87, 134102 (2005).
[CrossRef]

2000 (1)

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, Nature 442, 551 (2006).
[CrossRef]

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, Nature 442, 551 (2006).
[CrossRef]

Berge, B.

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

Brochu, P.

P. Brochu and Q. Pei, Macromol. Rapid Commun. 31, 10 (2010).
[CrossRef]

Busby, H. R.

J. A. Collins, H. R. Busby, and G. H. Staab, Mechanical Design of Machine Elements and Machines (Wiley, 2009).

Carpi, F.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, Adv. Funct. Mater. 21, 4152 (2011).
[CrossRef]

Choi, H. R.

Choi, S. T.

Clarke, D. R.

Collins, J. A.

J. A. Collins, H. R. Busby, and G. H. Staab, Mechanical Design of Machine Elements and Machines (Wiley, 2009).

De Rossi, D.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, Adv. Funct. Mater. 21, 4152 (2011).
[CrossRef]

Diebold, R. M.

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, Nature 442, 551 (2006).
[CrossRef]

Frediani, G.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, Adv. Funct. Mater. 21, 4152 (2011).
[CrossRef]

Graham-Rowe, D.

D. Graham-Rowe, Nat. Photonics sample, 2 (2006).
[CrossRef]

Hardt, S.

W. Xiao and S. Hardt, J. Micromech. Microeng. 20, 055032 (2010).
[CrossRef]

Hirsa, A. H.

C. A. López and A. H. Hirsa, Nat. Photonics 2, 610 (2008).
[CrossRef]

C. A. López, C.-C. Lee, and A. H. Hirsa, Appl. Phys. Lett. 87, 134102 (2005).
[CrossRef]

Hwang, T.

Jiang, H.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, Nature 442, 551 (2006).
[CrossRef]

Kim, K.

Kim, W.

Koo, J. C.

Kwon, J. O.

Laikin, M.

M. Laikin, Lens Design, 4th ed. (CRC Press, 2007).

Lee, C.-C.

C. A. López, C.-C. Lee, and A. H. Hirsa, Appl. Phys. Lett. 87, 134102 (2005).
[CrossRef]

Lee, J. Y.

Lee, S.

Lee, S. S.

S. W. Lee and S. S. Lee, Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

Lee, S. W.

S. W. Lee and S. S. Lee, Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

Lee, Y.

López, C. A.

C. A. López and A. H. Hirsa, Nat. Photonics 2, 610 (2008).
[CrossRef]

C. A. López, C.-C. Lee, and A. H. Hirsa, Appl. Phys. Lett. 87, 134102 (2005).
[CrossRef]

Nam, J.-D.

Nguyen, N.-T.

N.-T. Nguyen, Biomicrofluidics 4, 031501 (2010).
[CrossRef]

Niklaus, M.

M. Niklaus, S. Rosset, and H. Shea, Proc. SPIE 7642, 76422K (2010).
[CrossRef]

Pei, Q.

P. Brochu and Q. Pei, Macromol. Rapid Commun. 31, 10 (2010).
[CrossRef]

Peseux, J.

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

Pugal, D.

Ren, H.

H. Ren, H. Xianyu, S. Xu, and S.-T. Wu, Opt. Express 16, 14954 (2008).
[CrossRef]

H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).

Rosset, S.

M. Niklaus, S. Rosset, and H. Shea, Proc. SPIE 7642, 76422K (2010).
[CrossRef]

Shea, H.

M. Niklaus, S. Rosset, and H. Shea, Proc. SPIE 7642, 76422K (2010).
[CrossRef]

Shian, S.

Son, S.-i.

Staab, G. H.

J. A. Collins, H. R. Busby, and G. H. Staab, Mechanical Design of Machine Elements and Machines (Wiley, 2009).

Turco, S.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, Adv. Funct. Mater. 21, 4152 (2011).
[CrossRef]

Wei, K.

K. Wei and Y. Zhao, in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2013), pp. 133–136.

Wu, S.-T.

H. Ren, H. Xianyu, S. Xu, and S.-T. Wu, Opt. Express 16, 14954 (2008).
[CrossRef]

H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).

Xianyu, H.

Xiao, W.

W. Xiao and S. Hardt, J. Micromech. Microeng. 20, 055032 (2010).
[CrossRef]

Xu, S.

Zhao, Y.

K. Wei and Y. Zhao, in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2013), pp. 133–136.

Adv. Funct. Mater. (1)

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, Adv. Funct. Mater. 21, 4152 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. W. Lee and S. S. Lee, Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

C. A. López, C.-C. Lee, and A. H. Hirsa, Appl. Phys. Lett. 87, 134102 (2005).
[CrossRef]

Biomicrofluidics (1)

N.-T. Nguyen, Biomicrofluidics 4, 031501 (2010).
[CrossRef]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

J. Micromech. Microeng. (1)

W. Xiao and S. Hardt, J. Micromech. Microeng. 20, 055032 (2010).
[CrossRef]

Macromol. Rapid Commun. (1)

P. Brochu and Q. Pei, Macromol. Rapid Commun. 31, 10 (2010).
[CrossRef]

Nat. Photonics (2)

C. A. López and A. H. Hirsa, Nat. Photonics 2, 610 (2008).
[CrossRef]

D. Graham-Rowe, Nat. Photonics sample, 2 (2006).
[CrossRef]

Nature (1)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, Nature 442, 551 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

M. Niklaus, S. Rosset, and H. Shea, Proc. SPIE 7642, 76422K (2010).
[CrossRef]

Other (4)

J. A. Collins, H. R. Busby, and G. H. Staab, Mechanical Design of Machine Elements and Machines (Wiley, 2009).

K. Wei and Y. Zhao, in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2013), pp. 133–136.

M. Laikin, Lens Design, 4th ed. (CRC Press, 2007).

H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Illustration of the electroactive fluidic lens driven by a concentric annular dielectric actuator. (a) Perspective view of the system. (b) Diagram of the lens in action. The red dotted line indicates the optical axis. Δs is the change in lens sagitta. Δf is the change in focal length.

Fig. 2.
Fig. 2.

Comparison of the volume changes of circular and annular DE actuators at different initial maximal membrane deflections under electrical activation.

Fig. 3.
Fig. 3.

Fabrication and assembly processes. (a)–(c) Process flow. (d)–(e) Top and bottom frames printed by a 3D printer. (f) Assembled electroactive fluidic lens. The scale bars in (d)–(f) denote 5 mm.

Fig. 4.
Fig. 4.

Comparison of (a) focal length and (b) F# changes with different initial lens sagittas.

Fig. 5.
Fig. 5.

Response time for a lens with the initial sag of 273 μm.

Fig. 6.
Fig. 6.

Lens resolving power at the initial sag of 273 μm at f=25mm using a 1951 USAF target.

Fig. 7.
Fig. 7.

Demonstration of focus changing. (a) Illustration of the optical setup and (b)–(e) optical images showing the focal length change at the actuation voltages of 0, 0.25, 0.5, and 1.0 kV, respectively.

Tables (1)

Tables Icon

Table 1. Focal Length Evolution During Forward Actuation and Backward Actuation

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

fr22(n1)1s,
ΔVcπr2Δs/2.
ΔVaπ2(rO2rI2)4[h(U,P)h(0,P)],
P=2th(rOrI)2/4+h2[8Eh23(rOrI)2(1υ)ε0εrU2t2+σ0],

Metrics