Abstract

A three-layer construction was proposed to induce anomalous transmission response for a normal incidence of terahertz (THz) wave. This structure was composed of a dielectric layer of quartz and two metallic layers, which were deposited on the two surfaces of quartz and patterned the same periodic arrays of subwavelength air circular loop. Based on comparative analyses of dispersion relations of both the structure and its partial structures, propagating surface plasmon and localized surface plasmon principally dominated the lower and higher resonant peaks appearing in the calculated transmittance spectrum, respectively. A sample was fabricated by laser technology for experiment and the measured THz transmission showed a good agreement with simulation, providing reference for potential applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Dragoman and D. Dragoman, Prog. Quantum Electron. 32, 1 (2008).
    [CrossRef]
  2. B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, Opt. Express 19, 14653 (2011).
    [CrossRef]
  3. B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. H. Hong, and S. A. Maier, Adv. Opt. Mater. 1, 543 (2013).
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
    [CrossRef]
  5. S. Hayashi and T. Okamoto, J. Phys. D 45, 433001 (2012).
  6. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  7. P. Frank, J. Srajer, A. Schwaighofer, A. Kibrom, and C. Nowak, Opt. Lett. 37, 3603 (2012).
    [CrossRef]
  8. S. Zhu and W. Zhou, J. Nanomater. 2012, 206069 (2012).
    [CrossRef]
  9. A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, Phys. Rev. Lett. 108, 223905 (2012).
    [CrossRef]
  10. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
    [CrossRef]
  11. S. Y. Park and D. Stroud, Phys. Rev. B 69, 125418 (2004).
  12. J. Zhang, L. Zhang, and W. Xu, J. Phys. D 45, 113001 (2012).
  13. Z. C. Ruan and M. Qiu, Phys. Rev. Lett. 96, 233901 (2006).
    [CrossRef]
  14. Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, Opt. Express 19, 21425 (2011).
    [CrossRef]
  15. W. Zhang, Eur. Phys. J. Appl. Phys. 43, 1 (2008).
    [CrossRef]
  16. L. Rao, D. X. Yang, L. Zhang, T. Li, and S. Xia, Appl. Opt. 51, 912 (2012).
    [CrossRef]
  17. H. Hirori, M. Nagai, and K. Tanaka, Opt. Express 13, 10801 (2005).
    [CrossRef]

2013 (1)

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. H. Hong, and S. A. Maier, Adv. Opt. Mater. 1, 543 (2013).

2012 (6)

S. Hayashi and T. Okamoto, J. Phys. D 45, 433001 (2012).

P. Frank, J. Srajer, A. Schwaighofer, A. Kibrom, and C. Nowak, Opt. Lett. 37, 3603 (2012).
[CrossRef]

S. Zhu and W. Zhou, J. Nanomater. 2012, 206069 (2012).
[CrossRef]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, Phys. Rev. Lett. 108, 223905 (2012).
[CrossRef]

J. Zhang, L. Zhang, and W. Xu, J. Phys. D 45, 113001 (2012).

L. Rao, D. X. Yang, L. Zhang, T. Li, and S. Xia, Appl. Opt. 51, 912 (2012).
[CrossRef]

2011 (2)

2010 (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

2008 (2)

M. Dragoman and D. Dragoman, Prog. Quantum Electron. 32, 1 (2008).
[CrossRef]

W. Zhang, Eur. Phys. J. Appl. Phys. 43, 1 (2008).
[CrossRef]

2006 (1)

Z. C. Ruan and M. Qiu, Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef]

2005 (1)

2004 (1)

S. Y. Park and D. Stroud, Phys. Rev. B 69, 125418 (2004).

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Breese, M. B. H.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. H. Hong, and S. A. Maier, Adv. Opt. Mater. 1, 543 (2013).

Cao, Y.

Chen, Z. C.

Dragoman, D.

M. Dragoman and D. Dragoman, Prog. Quantum Electron. 32, 1 (2008).
[CrossRef]

Dragoman, M.

M. Dragoman and D. Dragoman, Prog. Quantum Electron. 32, 1 (2008).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Fan, Y. C.

Fernández-Domínguez, A. I.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. H. Hong, and S. A. Maier, Adv. Opt. Mater. 1, 543 (2013).

Frank, P.

Garcia-Vidal, F. J.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, Phys. Rev. Lett. 108, 223905 (2012).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Giannini, V.

Hanham, S. M.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. H. Hong, and S. A. Maier, Adv. Opt. Mater. 1, 543 (2013).

B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, Opt. Express 19, 14653 (2011).
[CrossRef]

Hayashi, S.

S. Hayashi and T. Okamoto, J. Phys. D 45, 433001 (2012).

Hirori, H.

Hong, M. H.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. H. Hong, and S. A. Maier, Adv. Opt. Mater. 1, 543 (2013).

B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, Opt. Express 19, 14653 (2011).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Kibrom, A.

Klein, N.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. H. Hong, and S. A. Maier, Adv. Opt. Mater. 1, 543 (2013).

B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, Opt. Express 19, 14653 (2011).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Li, H. Q.

Li, T.

Liew, Y. F.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. H. Hong, and S. A. Maier, Adv. Opt. Mater. 1, 543 (2013).

B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, Opt. Express 19, 14653 (2011).
[CrossRef]

Maier, S. A.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. H. Hong, and S. A. Maier, Adv. Opt. Mater. 1, 543 (2013).

B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, Opt. Express 19, 14653 (2011).
[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Martin-Moreno, L.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, Phys. Rev. Lett. 108, 223905 (2012).
[CrossRef]

Moreno, E.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, Phys. Rev. Lett. 108, 223905 (2012).
[CrossRef]

Nagai, M.

Ng, B.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. H. Hong, and S. A. Maier, Adv. Opt. Mater. 1, 543 (2013).

B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, Opt. Express 19, 14653 (2011).
[CrossRef]

Nowak, C.

Okamoto, T.

S. Hayashi and T. Okamoto, J. Phys. D 45, 433001 (2012).

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Park, S. Y.

S. Y. Park and D. Stroud, Phys. Rev. B 69, 125418 (2004).

Pendry, J. B.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, Phys. Rev. Lett. 108, 223905 (2012).
[CrossRef]

Pors, A.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, Phys. Rev. Lett. 108, 223905 (2012).
[CrossRef]

Qiu, M.

Z. C. Ruan and M. Qiu, Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef]

Rao, L.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Ruan, Z. C.

Z. C. Ruan and M. Qiu, Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef]

Schwaighofer, A.

Srajer, J.

Stroud, D.

S. Y. Park and D. Stroud, Phys. Rev. B 69, 125418 (2004).

Tanaka, K.

Tang, M.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Wei, Z. Y.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Wu, J.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. H. Hong, and S. A. Maier, Adv. Opt. Mater. 1, 543 (2013).

Xia, S.

Xu, W.

J. Zhang, L. Zhang, and W. Xu, J. Phys. D 45, 113001 (2012).

Yang, D. X.

Yu, X.

Zhang, J.

J. Zhang, L. Zhang, and W. Xu, J. Phys. D 45, 113001 (2012).

Zhang, L.

J. Zhang, L. Zhang, and W. Xu, J. Phys. D 45, 113001 (2012).

L. Rao, D. X. Yang, L. Zhang, T. Li, and S. Xia, Appl. Opt. 51, 912 (2012).
[CrossRef]

Zhang, W.

W. Zhang, Eur. Phys. J. Appl. Phys. 43, 1 (2008).
[CrossRef]

Zhou, W.

S. Zhu and W. Zhou, J. Nanomater. 2012, 206069 (2012).
[CrossRef]

Zhu, S.

S. Zhu and W. Zhou, J. Nanomater. 2012, 206069 (2012).
[CrossRef]

Adv. Opt. Mater. (1)

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. H. Hong, and S. A. Maier, Adv. Opt. Mater. 1, 543 (2013).

Appl. Opt. (1)

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Eur. Phys. J. Appl. Phys. (1)

W. Zhang, Eur. Phys. J. Appl. Phys. 43, 1 (2008).
[CrossRef]

J. Nanomater. (1)

S. Zhu and W. Zhou, J. Nanomater. 2012, 206069 (2012).
[CrossRef]

J. Phys. D (2)

S. Hayashi and T. Okamoto, J. Phys. D 45, 433001 (2012).

J. Zhang, L. Zhang, and W. Xu, J. Phys. D 45, 113001 (2012).

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

S. Y. Park and D. Stroud, Phys. Rev. B 69, 125418 (2004).

Phys. Rev. Lett. (2)

Z. C. Ruan and M. Qiu, Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, Phys. Rev. Lett. 108, 223905 (2012).
[CrossRef]

Prog. Quantum Electron. (1)

M. Dragoman and D. Dragoman, Prog. Quantum Electron. 32, 1 (2008).
[CrossRef]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic configurations of each cell’s type in simulations: (a) MDM, (b) MD, (c) MD-H, and (d) MD-P. The middle dielectric and all the substrates are quartz (SiO2).

Fig. 2.
Fig. 2.

Calculated THz transmittance spectra of MD-P (green line), MD-H (blue line), MD (red line), and MDM (black line) structures.

Fig. 3.
Fig. 3.

Calculated dispersion relations along kx direction for (a) MD-P, (b) MD-H, (c) MD, and (d) MDM structures. For the case of a=200μm, the coordinate frequency c/a is 1.5 THz.

Fig. 4.
Fig. 4.

(a) Image of several unit cells with scale. The scale unit is millimeter. (b) Optical microscope image of the whole array.

Fig. 5.
Fig. 5.

(a) Frequency spectra of the reference and sample derived by FFT of the waveforms measured in the experiments, and spectrum of equivalent-area-transmission. (b) Measured and simulated transmittance spectra of the sample. Spectral resolution is higher than 0.0023 THz for all the experimental results.

Fig. 6.
Fig. 6.

Calculated THz transmittance spectra of MDM structure for filtering. Curve 1 (black line): d=140μm, εd=3.61; curve 2 (red line): d=100μm, εd=3.61; curve 3 (blue line): d=100μm, εd=1. Other parameters are: P=200μm, rin=80μm, h=10μm, w=10μm.

Metrics