Abstract

We demonstrate tunable, enhanced 0th-order transmission through a metal–dielectric nanohole array device with a subwavelength-thick liquid crystal (LC) layer. The LC filled the nanoholes and formed a subwavelength covering layer, which is then capped by a top cover layer. The wavelength where the transmittance dip associated with the LC occurs is determined by the anisotropic refractive-index component of the LC, which is normal to the surface of the hole array. A low-refractive-index cover layer suppresses unwanted higher-order diffraction, which results in an enhancement of the 0th-order transmission, which is closely related to laterally propagating surface plasmon polaritons. The proposed design is expected to help realize tunable plasmonic devices with high optical transmittance.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Jepsen and H. J. Gerritsen, Opt. Lett. 21, 1081 (1996).
    [CrossRef]
  2. M. Ozaki, Y. Shimoda, M. Kasano, and K. Yoshino, Adv. Mater. 14, 514 (2002).
    [CrossRef]
  3. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, Appl. Phys. Lett. 95, 033115 (2009).
    [CrossRef]
  4. M. Decker, C. Kremers, A. Minovich, I. Staude, A. E. Miroshnichenko, D. Chigrin, D. N. Neshev, C. Jagadish, and Y. S. Kivshar, Opt. Express 21, 8879 (2013).
    [CrossRef]
  5. O. Buchnev, J. Y. Ou, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, Opt. Express 21, 1633 (2013).
    [CrossRef]
  6. Y. U. Lee, E. Y. Choi, J. H. Woo, E. S. Kim, and J. W. Wu, Opt. Express 21, 17492 (2013).
    [CrossRef]
  7. C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
    [CrossRef]
  8. D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, Appl. Phys. Lett. 98, 093113 (2011).
    [CrossRef]
  9. T. Matsui, H. T. Miyazaki, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, M. Ochiai, Y. Sugimoto, M. Ozaki, M. Hangyo, and K. Asakawa, Opt. Express 20, 16092 (2012).
    [CrossRef]
  10. T. Matsui, T. Nomura, A. Miura, H. Fujikawa, N. Ikeda, D. Tsuya, H. T. Miyazaki, Y. Sugimoto, M. Ozaki, M. Hangyo, and K. Asakawa, Opt. Express 21, 6153 (2013).
    [CrossRef]
  11. H. Yoshida, T. Matsui, A. Miura, N. Ikeda, M. Ochiai, Y. Sugimoto, H. Fujikawa, and M. Ozaki, Opt. Mater. Express 2, 893 (2012).
    [CrossRef]
  12. A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, Appl. Phys. Lett. 96, 193103 (2010).
    [CrossRef]
  13. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, Opt. Lett. 24, 256 (1999).
    [CrossRef]
  14. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, Nano Lett. 8, 281 (2008).
    [CrossRef]
  15. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995).
    [CrossRef]
  16. L. Li, J. Opt. A 5, 345 (2003).
    [CrossRef]
  17. T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, J. Opt. A 11, 114019 (2009).
    [CrossRef]
  18. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998).
    [CrossRef]
  19. J. Li and S.-T. Wu, J. Appl. Phys. 95, 896 (2004).
    [CrossRef]
  20. W. H. Weber and G. W. Ford, Opt. Lett. 6, 122 (1981).
    [CrossRef]

2013

2012

2011

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, Appl. Phys. Lett. 98, 093113 (2011).
[CrossRef]

2010

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, Appl. Phys. Lett. 96, 193103 (2010).
[CrossRef]

2009

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, Appl. Phys. Lett. 95, 033115 (2009).
[CrossRef]

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, J. Opt. A 11, 114019 (2009).
[CrossRef]

2008

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, Nano Lett. 8, 281 (2008).
[CrossRef]

2007

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef]

2004

J. Li and S.-T. Wu, J. Appl. Phys. 95, 896 (2004).
[CrossRef]

2003

L. Li, J. Opt. A 5, 345 (2003).
[CrossRef]

2002

M. Ozaki, Y. Shimoda, M. Kasano, and K. Yoshino, Adv. Mater. 14, 514 (2002).
[CrossRef]

1999

1998

1996

1995

1981

Asakawa, K.

Buchnev, O.

Chettiar, U. K.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, Appl. Phys. Lett. 95, 033115 (2009).
[CrossRef]

Chigrin, D.

Choi, E. Y.

Decker, M.

Dickson, W.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, Nano Lett. 8, 281 (2008).
[CrossRef]

Djurišic, A. B.

Drachev, V.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, Appl. Phys. Lett. 95, 033115 (2009).
[CrossRef]

Ebbesen, T. W.

Elazar, J. M.

Evans, P. R.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, Nano Lett. 8, 281 (2008).
[CrossRef]

Fedotov, V. A.

Ford, G. W.

Fujikawa, H.

Gaylord, T. K.

Genet, C.

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef]

Gerritsen, H. J.

Giessen, H.

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, J. Opt. A 11, 114019 (2009).
[CrossRef]

Gippius, N. A.

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, J. Opt. A 11, 114019 (2009).
[CrossRef]

Granet, G.

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, J. Opt. A 11, 114019 (2009).
[CrossRef]

Grann, E. B.

Grupp, D. E.

Hangyo, M.

Ikeda, N.

Inoue, D.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, Appl. Phys. Lett. 98, 093113 (2011).
[CrossRef]

Jagadish, C.

Jepsen, M. L.

Kaczmarek, M.

Kasano, M.

M. Ozaki, Y. Shimoda, M. Kasano, and K. Yoshino, Adv. Mater. 14, 514 (2002).
[CrossRef]

Khoo, I. C.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, Appl. Phys. Lett. 95, 033115 (2009).
[CrossRef]

Kildishev, A. V.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, Appl. Phys. Lett. 95, 033115 (2009).
[CrossRef]

Kim, E. S.

Kim, T. J.

Kivshar, Y. S.

Koide, Y.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, Appl. Phys. Lett. 98, 093113 (2011).
[CrossRef]

Kremers, C.

Lee, Y. U.

Lezec, H. J.

Li, J.

J. Li and S.-T. Wu, J. Appl. Phys. 95, 896 (2004).
[CrossRef]

Li, L.

L. Li, J. Opt. A 5, 345 (2003).
[CrossRef]

Majewski, M. L.

Matsui, T.

Minovich, A.

Miroshnichenko, A. E.

Miura, A.

Miyazaki, H. T.

Moharam, M. G.

Neshev, D. N.

Nomura, T.

Ochiai, M.

Ou, J. Y.

Ozaki, M.

Pollard, R. J.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, Nano Lett. 8, 281 (2008).
[CrossRef]

Pommet, D. A.

Powell, D. A.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, Appl. Phys. Lett. 96, 193103 (2010).
[CrossRef]

Rakic, A. D.

Sato, K.

T. Matsui, H. T. Miyazaki, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, M. Ochiai, Y. Sugimoto, M. Ozaki, M. Hangyo, and K. Asakawa, Opt. Express 20, 16092 (2012).
[CrossRef]

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, Appl. Phys. Lett. 98, 093113 (2011).
[CrossRef]

Shadrivov, I. V.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, Appl. Phys. Lett. 96, 193103 (2010).
[CrossRef]

Shalaev, V. M.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, Appl. Phys. Lett. 95, 033115 (2009).
[CrossRef]

Shimoda, Y.

M. Ozaki, Y. Shimoda, M. Kasano, and K. Yoshino, Adv. Mater. 14, 514 (2002).
[CrossRef]

Staude, I.

Sugimoto, Y.

Thio, T.

Tikhodeev, S. G.

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, J. Opt. A 11, 114019 (2009).
[CrossRef]

Tsuya, D.

Weber, W. H.

Weiss, T.

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, J. Opt. A 11, 114019 (2009).
[CrossRef]

Woo, J. H.

Wu, J. W.

Wu, S.-T.

J. Li and S.-T. Wu, J. Appl. Phys. 95, 896 (2004).
[CrossRef]

Wurtz, G. A.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, Nano Lett. 8, 281 (2008).
[CrossRef]

Xiao, S.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, Appl. Phys. Lett. 95, 033115 (2009).
[CrossRef]

Yoshida, H.

Yoshino, K.

M. Ozaki, Y. Shimoda, M. Kasano, and K. Yoshino, Adv. Mater. 14, 514 (2002).
[CrossRef]

Zayats, A. V.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, Nano Lett. 8, 281 (2008).
[CrossRef]

Zheludev, N. I.

Adv. Mater.

M. Ozaki, Y. Shimoda, M. Kasano, and K. Yoshino, Adv. Mater. 14, 514 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, Appl. Phys. Lett. 95, 033115 (2009).
[CrossRef]

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, Appl. Phys. Lett. 98, 093113 (2011).
[CrossRef]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, Appl. Phys. Lett. 96, 193103 (2010).
[CrossRef]

J. Appl. Phys.

J. Li and S.-T. Wu, J. Appl. Phys. 95, 896 (2004).
[CrossRef]

J. Opt. A

L. Li, J. Opt. A 5, 345 (2003).
[CrossRef]

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, J. Opt. A 11, 114019 (2009).
[CrossRef]

J. Opt. Soc. Am. A

Nano Lett.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, Nano Lett. 8, 281 (2008).
[CrossRef]

Nature

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Unit cell structure in LC-containing SHA and (b) cross section of unit cell. From the substrate upward, the layer structure is SiO2 (50 nm), Al (30 nm), SiO2 (100 nm), Al (30 nm), SiO2 (50 nm), and LC (800 nm).

Fig. 2.
Fig. 2.

Calculated reflectance (R) and transmittance (T) spectra. (a) ncover=nLC=1.0 (air), (b) ncover=nLC=1.68. Inset: ncover=1.68 and nLC=1.52, 1.52, 1.68, (c) ncover=1.50 and nLC=1.52, 1.52, 1.52, 1.68, and (d) and (e) enhancement of Ez relative to the incident field at 1275 nm in xz-plane, corresponding to spectra in (b) and (c), respectively. Only the most significant diffraction efficiencies are considered in (a)–(c). All other efficiencies were negligibly small, especially at wavelengths longer than 1150 nm.

Fig. 3.
Fig. 3.

(a) Measured (Meas.) and calculated (Calc.) 0th-order transmission spectra for LC-containing SHA at 25°C. The solid and dashed lines represent spectra calculated using a sidewall slope of 90° and 85°, respectively. The inset shows the cross-sectional TEM image of the fabricated SHA without LCs; the nanoholes were filled with tungsten for TEM sample preparation. Although the substrate was also etched, it was numerically confirmed that this over-etching does not affect the spectra, and (b) measured transmittance spectra for the LC-containing SHA at various temperatures.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

|kk0|=|nsinθ+mλ0a|<nsin(π/2),
|ESPE0|2=2ϵ22Aϵ11/2ϵ2(ϵ2ϵ1)1/2,

Metrics