Abstract

We propose a novel photonic approach for generating a background-free millimeter-wave (MMW) ultra-wideband (UWB) signal based on a conventional dual-drive Mach–Zehnder modulator (DMZM). One arm of the DMZM is driven by a local oscillator (LO) signal. The LO power is optimized to realize optical carrier suppressed modulation. The other arm is fed by a rectangular signal. The MMW UWB pulses are generated by truncating the continuous wave LO signal into a pulsed one in a photodetector (PD). The generated MMW UWB signal is background-free by eliminating the baseband frequency components because the optical power launched to the PD keeps constant all the time. The proposed method is theoretically analyzed and experimentally verified. The generated MMW UWB signal centered at a frequency of 26 GHz meets the Federal Communications Commission spectral mask very well.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Aiello, G. D. Rogerson, IEEE Microw. Mag. 4(2), 36 (2003).
    [CrossRef]
  2. J. Yao, F. Zeng, Q. Wang, J. Lightwave Technol. 25, 3219 (2007).
    [CrossRef]
  3. M. Ran, B. I. Lembrikov, Y. Ben Ezra, IEEE Photon. J. 2, 36 (2010).
    [CrossRef]
  4. Y. Dai, J. Yao, J. Lightwave Technol. 26, 2513 (2008).
    [CrossRef]
  5. Y. Dai, J. Yao, J. Lightwave Technol. 27, 1448 (2009).
    [CrossRef]
  6. J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, P. Shum, Opt. Lett. 32, 1223 (2007).
    [CrossRef]
  7. W. Li, L. X. Wang, W. Hofmann, N. H. Zhu, D. Bimberg, Opt. Express 20, 20222 (2012).
    [CrossRef]
  8. F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, J. Lin, Opt. Express 18, 15870 (2010).
    [CrossRef]
  9. J. Li, Y. Liang, K. K. Y. Wong, IEEE Photon. Technol. Lett. 21, 1172 (2009).
    [CrossRef]
  10. Y. L. Guennec, R. Gary, IEEE Photon. Technol. Lett. 19, 996 (2007).
    [CrossRef]
  11. Q. Chang, Y. Tian, T. Ye, J. Gao, Y. Su, IEEE Photon. Technol. Lett. 20, 1651 (2008).
    [CrossRef]
  12. T. Kawanishi, T. Sakamoto, M. Izutsu, IEEE Microw. Wirel. Compon. Lett. 15, 153 (2005).
    [CrossRef]
  13. Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, J. Liu, IEEE Photon. Technol. Lett. 25, 335 (2013).
    [CrossRef]
  14. L. X. Wang, W. Li, J. Y. Zheng, H. Wang, J. G. Liu, N. H. Zhu, Opt. Lett. 38, 579 (2013).
    [CrossRef]
  15. W. Li, L. X. Wang, J. Y. Zheng, M. Li, N. H. Zhu, IEEE Photon. J. 5, 5502007 (2013).
    [CrossRef]
  16. F. Zhang, S. Pan, Opt. Express 21, 27017 (2013).
    [CrossRef]

2013 (4)

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, J. Liu, IEEE Photon. Technol. Lett. 25, 335 (2013).
[CrossRef]

L. X. Wang, W. Li, J. Y. Zheng, H. Wang, J. G. Liu, N. H. Zhu, Opt. Lett. 38, 579 (2013).
[CrossRef]

W. Li, L. X. Wang, J. Y. Zheng, M. Li, N. H. Zhu, IEEE Photon. J. 5, 5502007 (2013).
[CrossRef]

F. Zhang, S. Pan, Opt. Express 21, 27017 (2013).
[CrossRef]

2012 (1)

2010 (2)

2009 (2)

J. Li, Y. Liang, K. K. Y. Wong, IEEE Photon. Technol. Lett. 21, 1172 (2009).
[CrossRef]

Y. Dai, J. Yao, J. Lightwave Technol. 27, 1448 (2009).
[CrossRef]

2008 (2)

Q. Chang, Y. Tian, T. Ye, J. Gao, Y. Su, IEEE Photon. Technol. Lett. 20, 1651 (2008).
[CrossRef]

Y. Dai, J. Yao, J. Lightwave Technol. 26, 2513 (2008).
[CrossRef]

2007 (3)

2005 (1)

T. Kawanishi, T. Sakamoto, M. Izutsu, IEEE Microw. Wirel. Compon. Lett. 15, 153 (2005).
[CrossRef]

2003 (1)

G. R. Aiello, G. D. Rogerson, IEEE Microw. Mag. 4(2), 36 (2003).
[CrossRef]

Aiello, G. R.

G. R. Aiello, G. D. Rogerson, IEEE Microw. Mag. 4(2), 36 (2003).
[CrossRef]

Ben Ezra, Y.

M. Ran, B. I. Lembrikov, Y. Ben Ezra, IEEE Photon. J. 2, 36 (2010).
[CrossRef]

Bimberg, D.

Chang, Q.

Q. Chang, Y. Tian, T. Ye, J. Gao, Y. Su, IEEE Photon. Technol. Lett. 20, 1651 (2008).
[CrossRef]

Dai, Y.

Dong, J.

Du, Y.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, J. Liu, IEEE Photon. Technol. Lett. 25, 335 (2013).
[CrossRef]

Fu, S.

Gao, J.

Q. Chang, Y. Tian, T. Ye, J. Gao, Y. Su, IEEE Photon. Technol. Lett. 20, 1651 (2008).
[CrossRef]

Gary, R.

Y. L. Guennec, R. Gary, IEEE Photon. Technol. Lett. 19, 996 (2007).
[CrossRef]

Guennec, Y. L.

Y. L. Guennec, R. Gary, IEEE Photon. Technol. Lett. 19, 996 (2007).
[CrossRef]

Hofmann, W.

Hong, X.

Huang, D.

Izutsu, M.

T. Kawanishi, T. Sakamoto, M. Izutsu, IEEE Microw. Wirel. Compon. Lett. 15, 153 (2005).
[CrossRef]

Kawanishi, T.

T. Kawanishi, T. Sakamoto, M. Izutsu, IEEE Microw. Wirel. Compon. Lett. 15, 153 (2005).
[CrossRef]

Lembrikov, B. I.

M. Ran, B. I. Lembrikov, Y. Ben Ezra, IEEE Photon. J. 2, 36 (2010).
[CrossRef]

Li, J.

J. Li, Y. Liang, K. K. Y. Wong, IEEE Photon. Technol. Lett. 21, 1172 (2009).
[CrossRef]

Li, M.

W. Li, L. X. Wang, J. Y. Zheng, M. Li, N. H. Zhu, IEEE Photon. J. 5, 5502007 (2013).
[CrossRef]

Li, W.

Li, Y.

Liang, Y.

J. Li, Y. Liang, K. K. Y. Wong, IEEE Photon. Technol. Lett. 21, 1172 (2009).
[CrossRef]

Lin, J.

Liu, J.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, J. Liu, IEEE Photon. Technol. Lett. 25, 335 (2013).
[CrossRef]

Liu, J. G.

Pan, S.

Ran, M.

M. Ran, B. I. Lembrikov, Y. Ben Ezra, IEEE Photon. J. 2, 36 (2010).
[CrossRef]

Rogerson, G. D.

G. R. Aiello, G. D. Rogerson, IEEE Microw. Mag. 4(2), 36 (2003).
[CrossRef]

Sakamoto, T.

T. Kawanishi, T. Sakamoto, M. Izutsu, IEEE Microw. Wirel. Compon. Lett. 15, 153 (2005).
[CrossRef]

Shum, P.

Su, Y.

Q. Chang, Y. Tian, T. Ye, J. Gao, Y. Su, IEEE Photon. Technol. Lett. 20, 1651 (2008).
[CrossRef]

Tian, Y.

Q. Chang, Y. Tian, T. Ye, J. Gao, Y. Su, IEEE Photon. Technol. Lett. 20, 1651 (2008).
[CrossRef]

Wang, H.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, J. Liu, IEEE Photon. Technol. Lett. 25, 335 (2013).
[CrossRef]

L. X. Wang, W. Li, J. Y. Zheng, H. Wang, J. G. Liu, N. H. Zhu, Opt. Lett. 38, 579 (2013).
[CrossRef]

Wang, L.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, J. Liu, IEEE Photon. Technol. Lett. 25, 335 (2013).
[CrossRef]

Wang, L. X.

Wang, Q.

Wong, K. K. Y.

J. Li, Y. Liang, K. K. Y. Wong, IEEE Photon. Technol. Lett. 21, 1172 (2009).
[CrossRef]

Wu, J.

Xu, J.

Xu, K.

Yao, J.

Ye, T.

Q. Chang, Y. Tian, T. Ye, J. Gao, Y. Su, IEEE Photon. Technol. Lett. 20, 1651 (2008).
[CrossRef]

Zeng, F.

Zhang, F.

Zhang, X.

Zheng, J.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, J. Liu, IEEE Photon. Technol. Lett. 25, 335 (2013).
[CrossRef]

Zheng, J. Y.

W. Li, L. X. Wang, J. Y. Zheng, M. Li, N. H. Zhu, IEEE Photon. J. 5, 5502007 (2013).
[CrossRef]

L. X. Wang, W. Li, J. Y. Zheng, H. Wang, J. G. Liu, N. H. Zhu, Opt. Lett. 38, 579 (2013).
[CrossRef]

Zhu, N.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, J. Liu, IEEE Photon. Technol. Lett. 25, 335 (2013).
[CrossRef]

Zhu, N. H.

IEEE Microw. Mag. (1)

G. R. Aiello, G. D. Rogerson, IEEE Microw. Mag. 4(2), 36 (2003).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

T. Kawanishi, T. Sakamoto, M. Izutsu, IEEE Microw. Wirel. Compon. Lett. 15, 153 (2005).
[CrossRef]

IEEE Photon. J. (2)

W. Li, L. X. Wang, J. Y. Zheng, M. Li, N. H. Zhu, IEEE Photon. J. 5, 5502007 (2013).
[CrossRef]

M. Ran, B. I. Lembrikov, Y. Ben Ezra, IEEE Photon. J. 2, 36 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, J. Liu, IEEE Photon. Technol. Lett. 25, 335 (2013).
[CrossRef]

J. Li, Y. Liang, K. K. Y. Wong, IEEE Photon. Technol. Lett. 21, 1172 (2009).
[CrossRef]

Y. L. Guennec, R. Gary, IEEE Photon. Technol. Lett. 19, 996 (2007).
[CrossRef]

Q. Chang, Y. Tian, T. Ye, J. Gao, Y. Su, IEEE Photon. Technol. Lett. 20, 1651 (2008).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (3)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic configuration of the proposed DMZM-based MMW UWB generator. (LD, laser diode; DMZM, dual-drive Mach–Zehnder modulator; MS, microwave source; PPG, pulse pattern generator, PD, photodetector; OSA, optical spectrum analyzer; OSC, sampling oscilloscope; ESA, electrical spectrum analyzer). (b) Schematic principle of the proposed method.

Fig. 2.
Fig. 2.

Measured optical spectrum at the output of the DMZM as well as the simulated optical spectrum at arm1 of the DMZM.

Fig. 3.
Fig. 3.

Measured MMW UWB pulse at a center frequency of 26 GHz.

Fig. 4.
Fig. 4.

Measured electrical spectrum of the generated MMW UWB signal.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E(t)=expj(ω0t+β1sin(ωLOt))+expj(ω0t+β2r(t)+φ),
i(t)E(t)·E*(t)=2+2cos(β1sinωLOt)cos[β2r(t)+φ]+2sin(β1sinωLOt)sin[β2r(t)+φ].
i(t)2+2[J0(β1)+2n=1J2n(β1)cos(2nωLOt)]cos[β2r(t)+φ]+2{2n=1J2n1(β1)sin[(2n1)ωLOt]}sin[β2r(t)+φ],
i(t)2+2J0(β1)cos[β2r(t)+φ]+4J1(β1)sin[β2r(t)+φ]sin(ωLOt).
i(t)2+2sin[β2r(t)]sin(ωLOt).

Metrics