Abstract

We introduce the concept of directly exciting the lower level of a laser transition in addition to the upper laser level for the provision of new possibilities for light emission from a fiber. In a first demonstration, using diode laser light at 1150 and 1950 nm, we respectively excite the upper and lower laser level of the I56I57 transition (2.9 μm) of Ho3+-doped ZBLAN, demonstrating a power-scalable arrangement that can switch between free-running and superluminescent spectral output. The spectral composition of the gain-switched pulse derived from modulating the upper laser level pump light depends entirely on the degree of lower laser level excitation at 1950 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zhu, R. Jain, Opt. Lett. 32, 26 (2007).
    [CrossRef]
  2. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, S. Sakabe, Opt. Lett. 34, 3062 (2009).
    [CrossRef]
  3. D. Faucher, M. Bernier, G. Androz, N. Caron, R. Vallée, Opt. Lett. 36, 1104 (2011).
    [CrossRef]
  4. S. Tokita, M. Hirokane, M. Murakami, S. Shimizu, M. Hashida, S. Sakabe, Opt. Lett. 35, 3943 (2010).
    [CrossRef]
  5. D. Hudson, E. Magi, L. Gomes, S. Jackson, Electron. Lett. 47, 985 (2011).
    [CrossRef]
  6. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, S. Sakabe, Opt. Lett. 36, 2812 (2011).
    [CrossRef]
  7. T. Hu, D. D. Hudson, S. D. Jackson, Opt. Lett. 37, 2145 (2012).
    [CrossRef]
  8. M. Gorjan, R. Petkovšek, M. Marinček, M. Čopič, Opt. Lett. 36, 1923 (2011).
    [CrossRef]
  9. J. Li, D. D. Hudson, Y. Liu, S. D. Jackson, Opt. Lett. 37, 3747 (2012).
    [CrossRef]
  10. C. Wei, X. Zhu, R. A. Norwood, N. Peyghambarian, Opt. Lett. 37, 3849 (2012).
    [CrossRef]
  11. S. D. Jackson, Electron. Lett. 45, 830 (2009).
    [CrossRef]
  12. J. Li, D. D. Hudson, S. D. Jackson, Opt. Lett. 36, 3642 (2011).
    [CrossRef]
  13. J. Li, T. Hu, S. D. Jackson, Opt. Express 20, 13123 (2012).
    [CrossRef]
  14. A. E. Siegman, Lasers (University Science Books, 1986).
  15. J. R. Salcedo, J. M. Sousa, V. V. Kuzmin, Appl. Phys. B 62, 83 (1996).
    [CrossRef]
  16. D. Findlay, R. A. Clay, Phys. Lett. 20, 277 (1966).
    [CrossRef]
  17. S. D. Jackson, Opt. Lett. 34, 2327 (2009).
    [CrossRef]

2012 (4)

2011 (5)

2010 (1)

2009 (3)

2007 (1)

1996 (1)

J. R. Salcedo, J. M. Sousa, V. V. Kuzmin, Appl. Phys. B 62, 83 (1996).
[CrossRef]

1966 (1)

D. Findlay, R. A. Clay, Phys. Lett. 20, 277 (1966).
[CrossRef]

Androz, G.

Bernier, M.

Caron, N.

Clay, R. A.

D. Findlay, R. A. Clay, Phys. Lett. 20, 277 (1966).
[CrossRef]

Copic, M.

Faucher, D.

Findlay, D.

D. Findlay, R. A. Clay, Phys. Lett. 20, 277 (1966).
[CrossRef]

Gomes, L.

D. Hudson, E. Magi, L. Gomes, S. Jackson, Electron. Lett. 47, 985 (2011).
[CrossRef]

Gorjan, M.

Hashida, M.

Hirokane, M.

Hu, T.

Hudson, D.

D. Hudson, E. Magi, L. Gomes, S. Jackson, Electron. Lett. 47, 985 (2011).
[CrossRef]

Hudson, D. D.

Jackson, S.

D. Hudson, E. Magi, L. Gomes, S. Jackson, Electron. Lett. 47, 985 (2011).
[CrossRef]

Jackson, S. D.

Jain, R.

Kuzmin, V. V.

J. R. Salcedo, J. M. Sousa, V. V. Kuzmin, Appl. Phys. B 62, 83 (1996).
[CrossRef]

Li, J.

Liu, Y.

Magi, E.

D. Hudson, E. Magi, L. Gomes, S. Jackson, Electron. Lett. 47, 985 (2011).
[CrossRef]

Marincek, M.

Murakami, M.

Norwood, R. A.

Petkovšek, R.

Peyghambarian, N.

Sakabe, S.

Salcedo, J. R.

J. R. Salcedo, J. M. Sousa, V. V. Kuzmin, Appl. Phys. B 62, 83 (1996).
[CrossRef]

Shimizu, S.

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Sousa, J. M.

J. R. Salcedo, J. M. Sousa, V. V. Kuzmin, Appl. Phys. B 62, 83 (1996).
[CrossRef]

Tokita, S.

Vallée, R.

Wei, C.

Zhu, X.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Simplified energy diagram showing the Ho3+ laser transitions and the pump transitions.

Fig. 2.
Fig. 2.

Experimental setup. The Ho3+-doped ZBLAN fiber was pumped by two different wavelengths targeting adjacent energy manifolds.

Fig. 3.
Fig. 3.

Typical gain-switched pulse that was created by modulating the 1150 nm diode light. The inset shows the typical relaxation oscillations used for the transition characterization. The chopper repetition frequency for modulation of the 1150 nm pump light was 140 Hz and the “on” time was approximately 3.6 ms.

Fig. 4.
Fig. 4.

Measured (a) square of the frequency of the relaxation oscillations, ω2, and (b) damping rate of the relaxation oscillation, γ, as a function of the inversion ratio, r. The inversion ratio is defined as the ratio of absorbed pump power and the absorbed pump power at threshold.

Fig. 5.
Fig. 5.

Measured output power from the Ho3+ laser, P2.9 as a function of absorbed 1150 nm power, P1150for different levels of additional pumping with 1950 nm light. Insets show typical spectra for both lasing and superluminescent operation.

Fig. 6.
Fig. 6.

Typical gain-switched pulse with dual pumping (i.e., cw pumping at 1950 nm). Inset shows the spectra of the superluminescent shoulder region. The chopper repetition frequency for modulation of the 1150 nm pump light was 140 Hz and the “on” time was approximately 3.6 ms.

Metrics