Abstract

We demonstrate a compact, thermally reconfigurable reflection suppressor on a silicon-on-insulator (SOI) platform, without reliance on nonreciprocal mechanisms. A reflection suppression ratio of 40 dB is achieved with a footprint of 105 μm in length. The insertion loss of the device is below 0.15 dB, and its total power consumption stays below 20 mW. The operation bandwidth depends on the frequency dependence of the back reflection going into the suppressor, which is predominantly determined by the distance between the device and the source of reflection. In this work, a 20 dB reflection suppression bandwidth of 20.7 GHz was achieved.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription