Abstract

In this Letter we present a study of light coupling into a pair of Type II waveguides made of lithium niobate crystals by using femtosecond laser writing. Simulations based on the beam propagation method and optical fiber coupling experiments with the guiding structures showed good agreement. The presented results can be a suitable tool for designing high-performance optical circuits using femtosecond laser writing techniques for different technological requirements.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Pollock, M. Lipson, Integrated Photonics (Springer, 2003).
  2. K. Minoshima, A. M. Kowalevicz, E. P. Ippen, J. G. Fujimoto, Opt. Express 10, 645 (2002).
    [CrossRef]
  3. A. M. Streltsov, N. F. Borrelli, Opt. Lett. 26, 42 (2001).
    [CrossRef]
  4. M. Pospiech, M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, U. Morgner, Opt. Express 17, 3555 (2009).
    [CrossRef]
  5. G. Lifante, Integrated Photonics: Fundamentals (Wiley, 2003).
  6. E. Gamaly, Femtosecond Laser Matter Interactions: Theory, Experiments and Applications (Pan Stanford, 2011).
  7. R. Ramponi, R. Osellame, G. Cerullo, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Vol. 123 of Topics in Applied Physics (Springer, 2012).
  8. A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, D. Jaque, Opt. Lett. 35, 330 (2010).
    [CrossRef]
  9. A. Szameit, F. Dreisow, T. Pertsch, S. Nolte, A. Tunnermann, Opt. Express 15, 1579 (2007).
    [CrossRef]
  10. K. Okamoto, Fundamentals of Optical Waveguides (Elsevier, 2006).
  11. Beam Prop-Rsoft User Guide, RSoft Design Group, Inc. 400 Executive Blvd., Suite 100, Ossining, New York 10562 (2008).
  12. D. Biasetti, E. Neyra, J. R. Vázquez de Aldana, L. Roso, G. A. Torchia, Appl. Phys. A 110, 595 (2013).
    [CrossRef]
  13. J. Burghoff, S. Nolte, A. Tunnermann, Appl. Phys. A 89, 127 (2007).
    [CrossRef]

2013 (1)

D. Biasetti, E. Neyra, J. R. Vázquez de Aldana, L. Roso, G. A. Torchia, Appl. Phys. A 110, 595 (2013).
[CrossRef]

2010 (1)

2009 (1)

2007 (2)

2002 (1)

2001 (1)

Bellini, N.

Benayas, A.

Biasetti, D.

D. Biasetti, E. Neyra, J. R. Vázquez de Aldana, L. Roso, G. A. Torchia, Appl. Phys. A 110, 595 (2013).
[CrossRef]

Borrelli, N. F.

Burghoff, J.

J. Burghoff, S. Nolte, A. Tunnermann, Appl. Phys. A 89, 127 (2007).
[CrossRef]

Cantelar, E.

Cerullo, G.

M. Pospiech, M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, U. Morgner, Opt. Express 17, 3555 (2009).
[CrossRef]

R. Ramponi, R. Osellame, G. Cerullo, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Vol. 123 of Topics in Applied Physics (Springer, 2012).

Dreisow, F.

Emons, M.

Fujimoto, J. G.

Gamaly, E.

E. Gamaly, Femtosecond Laser Matter Interactions: Theory, Experiments and Applications (Pan Stanford, 2011).

Ippen, E. P.

Jacinto, C.

Jaque, D.

Jaque, F.

Kaminskii, A. A.

Kowalevicz, A. M.

Lamela, J.

Lifante, G.

G. Lifante, Integrated Photonics: Fundamentals (Wiley, 2003).

Lipson, M.

C. R. Pollock, M. Lipson, Integrated Photonics (Springer, 2003).

Minoshima, K.

Morgner, U.

Neyra, E.

D. Biasetti, E. Neyra, J. R. Vázquez de Aldana, L. Roso, G. A. Torchia, Appl. Phys. A 110, 595 (2013).
[CrossRef]

Nolte, S.

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Elsevier, 2006).

Osellame, R.

M. Pospiech, M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, U. Morgner, Opt. Express 17, 3555 (2009).
[CrossRef]

R. Ramponi, R. Osellame, G. Cerullo, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Vol. 123 of Topics in Applied Physics (Springer, 2012).

Palmer, G.

Pertsch, T.

Pollock, C. R.

C. R. Pollock, M. Lipson, Integrated Photonics (Springer, 2003).

Pospiech, M.

Ramponi, R.

R. Ramponi, R. Osellame, G. Cerullo, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Vol. 123 of Topics in Applied Physics (Springer, 2012).

Roso, L.

Silva, W. F.

Steinmann, A.

Streltsov, A. M.

Szameit, A.

Torchia, G. A.

Tunnermann, A.

Vázquez de Aldana, J. R.

Appl. Phys. A (2)

D. Biasetti, E. Neyra, J. R. Vázquez de Aldana, L. Roso, G. A. Torchia, Appl. Phys. A 110, 595 (2013).
[CrossRef]

J. Burghoff, S. Nolte, A. Tunnermann, Appl. Phys. A 89, 127 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Other (6)

C. R. Pollock, M. Lipson, Integrated Photonics (Springer, 2003).

G. Lifante, Integrated Photonics: Fundamentals (Wiley, 2003).

E. Gamaly, Femtosecond Laser Matter Interactions: Theory, Experiments and Applications (Pan Stanford, 2011).

R. Ramponi, R. Osellame, G. Cerullo, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Vol. 123 of Topics in Applied Physics (Springer, 2012).

K. Okamoto, Fundamentals of Optical Waveguides (Elsevier, 2006).

Beam Prop-Rsoft User Guide, RSoft Design Group, Inc. 400 Executive Blvd., Suite 100, Ossining, New York 10562 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Guided modes obtained in a pair of waveguides with separation between tracks of (a) 35 μm, (b) 30 μm, (c) 25 μm, and (d) 20 μm.

Fig. 2.
Fig. 2.

Refractive index profile proposed for simulation corresponding to a single-track written waveguide in LNB.

Fig. 3.
Fig. 3.

Simulation of the coupled modes showing the propagation of the electric field module along the waveguide pair with a 25 μm gap.

Fig. 4.
Fig. 4.

Coupling length versus gap. The inset shows the intensity of the coupled mode corresponding to a 35 μm gap for a sample length of 2300 μm.

Metrics